Методы изучения географического прошлого земли. Внутреннее строение земли

Объектами , Задачи геологии:

Методы

1.

2. Геофизические методы Сейсмические методы Гравиметрические методы Палеомагнитный метод

3.

4. Методы моделирования

5. Метод актуализма



6.

Нутреннее строение Земли

Чтобы понять каким образом геологи создали модель строения Земли, надо знать основные свойства и их параметры, характеризующие все части Земли. К таким свойствам (или характеристикам) относятся:

1. Физические - плотность, упругие магнитные свойства, давление и температура.

2. Химические - химический состав и химические соединения, распределение химических элементов в Земле.

Исходя из этого, определяется выбор методов исследования состава и строения Земли. Кратко рассмотрим их.

Прежде всего, отметим, что все методы разделяются на:

· прямые - опираются на непосредственное изучение минералов и горных пород и их размещении в толщах Земли;

· косвенные - основаны на изучении физических и химических параметров минералов, пород и толщ с помощью приборов.

Прямыми методами мы можем изучить лишь верхнюю часть Земли, т.к. самая глубокая скважина (Кольская) достигла~12 км. О более глубоких частях можно судить по вулканическим извержениям.

Глубинное внутреннее строение Земли изучается косвенными методами, в основном комплексом геофизических методов. Рассмотрим основные из них.

1.Сейсмический метод (греч. сейсмос - трясение) - опирается на явление возникновения и распространения упругих колебаний (или сейсмических волн) в различных средах. Упругие колебания возникают в Земле при землетрясениях, падениях метеоритов или взрывах и начинают распространяться с разной скоростью от очага их возникновения (очага землетрясения) до поверхности Земли. Выделяют два типа сейсмических волн:

1-продольные P-волны (самые быстрые), проходят через все среды - твердые и жидкие;

2-поперечные S-волны, более медленные и проходят только через твердые среды.



Сейсмические волны при землетрясениях возникают на глубинах от 10 км до 700 км. Скорость сейсмических волн зависит от упругих свойств и плотности горных пород, которые они пересекают. Достигая поверхности Земли, они как бы просвечивают ее и дают представление о той среде, которую пересекли. Изменение скоростей дает представление о неоднородности и расслоенности Земли. Кроме изменения скоростей, сейсмические волны испытывают преломление, проходя через неоднородные слои или отражение от поверхности, разделяющей слои.

2.Гравиметрический метод основан на изучении ускорения силы тяжести Dg, которое зависит не только от географической широты, но и от плотности вещества Земли. На основании изучения этого параметра установлена неоднородность в распределении плотности в разных частях Земли.

3.Магнитометрический метод - основан на изучении магнитных свойств вещества Земли. Многочисленные измерения показали, что различные горные породы отличаются друг от друга по магнитным свойствам. Это приводит к образованию участков с неоднородными магнитными свойствами, которые позволяют судить о строении Земли.

Сопоставляя все характеристики, ученые создали модель строения Земли, в которой выделяют три главные области (или геосферы):

1-Земная кора, 2-Мантия Земли, 3-Ядро Земли.

Каждая из них в свою очередь разделяется на зоны или слои. Рассмотрим их и основные параметры суммируем в таблице.

1. Земная кора (слой А)- это верхняя оболочка Земли, ее мощность колеблется от 6-7км до 75км.

2.Мантия Земли подразделяется на верхнюю (со слоями: В и С) и нижнюю (слой D).

3. Ядро - подразделяется на внешнее (слой Е) и внутреннее (слой G), между которыми располагается переходная зона - слой F.

Границей между земной корой и мантией является раздел Мохоровичича, между мантией и ядром также резкая граница- раздел Гуттенберга.

Из таблицы видно, что скорость продольных и поперечных волн возрастает от поверхности к более глубоким сферам Земли.

Особенностью верхней мантии является наличие зоны, в которой резко падает скорость поперечных волн до 0.2-0.3 км/сек. Это объясняется тем, что наряду с твердым состоянием, мантия частично представлена расплавом. Этот слой пониженных скоростей называют астеносферой . Его мощность 200-300 км, глубина 100-200 км.

На границе мантии и ядра происходит резкое снижение скорости продольных волн и затухание скорости поперечных волн. На основании этого сделано предположение, что внешнее ядро находится в состоянии расплава.

Средние значения плотности по геосферам показывают ее возрастание к ядру.

О химическом составе Земли и ее геосфер дают представление:

1- химический состав земной коры,

2 - химический состав метеоритов.

Химический состав земной коры изучен достаточно детально - известен ее валовый химический состав и роль химических элементов в минерало- и породообразовании. Труднее обстоит дело с изучением химического состава мантии и ядра. Прямыми методами мы этого пока сделать не можем. Поэтому применяют сравнительный подход. Исходным положением является предположение о протопланетном сходстве между составом метеоритов, упавших на землю, и внутренних геосфер Земли.

Все метеориты, попавшие на Землю, по составу делятся на типы:

1-железные, состоят из Ni и 90% Fe;

2-железокаменные (сидеролиты) состоят из Fe и силикатов,

3-каменные, состоящие из Fe-Mg силикатов и включений никелистого железа.

На основании анализа метеоритов, экспериментальных исследований и теоретических расчетов ученые предполагают (по таблице), что химический состав ядра - это никелистое железо. Правда, в последние годы высказывается точка зрения, что кроме Fe-Ni в ядре могут быть примеси S, Si или О. Для мантии химический спектр определяется Fe-Mg силикатами, т.е. своеобразный оливино-пироксеновый пиролит слагает нижнюю мантию, а верхнюю - породы ультраосновного состава.

Химический состав земной коры включает максимальный спектр химических элементов, который выявляется в многообразии минеральных видов, известных к настоящему времени. Количественное соотношение между химическими элементами достаточно велико. Сравнение наиболее распространенных элементов в земной коре и мантии показывает, что ведущую роль играют Si, Al и О 2 .

Таким образом, рассмотрев основные физические и химические характеристики Земли, мы видим, что их значения неодинаковы, распределяются зонально. Тем самым, давая представление о неоднородном строении Земли.

Строение Земной коры

Рассмотренные нами ранее типы горных пород - магматические, осадочные и метаморфические участвуют в строении земной коры. По своим физико-химическим параметрам все породы земной коры группируются в три крупных слоя. Снизу вверх это: 1-базальтовый, 2-гранито-гнейсовый, 3-осадочный. Эти слои в земной коре размещены неравномерно. Прежде всего, это выражается в колебаниях мощности каждого слоя. Кроме того, не во всех частях наблюдается полный набор слоев. Поэтому более детальное изучение позволило по составу, строению и мощности выделить четыре типа земной коры: 1-континентальный, 2-океанский, 3-субконтинентальный, 4-субокеанский.

1. Континентальный тип - имеет мощность 35-40 км до 55-75 км в горных сооружениях, содержит в своем составе все три слоя. Базальтовый слой состоит из пород типа габбро и метаморфических пород амфиболитовой и гранулитовой фаций. Называется он так потому, что по физическим параметрам он близок базальтам. Гранитный слой по составу - это гнейсы и гранито-гнейсы.

2.Океанский тип - резко отличается от континентального мощностью (5-20 км, средняя 6-7 км) и отсутствием гранито-гнейсового слоя. В его строении участвуют два слоя: первый слой осадочный, маломощный (до 1 км), второй слой - базальтовый. Некоторые ученые выделяют третий слой, который является продолжением второго, т.е. имеет базальтовый состав, но сложен ультраосновными породами мантии, подвергшихся серпентинизации.

3.Субконтинентальный тип - включает все три слоя и этим близок к континентальному. Но отличается меньшей мощностью и составом гранитного слоя (меньше гнейсов и больше вулканических пород кислого состава). Этот тип встречается на границе континентов и океанов с интенсивным проявлением вулканизма.

4. Субокеанский тип - располагается в глубоких прогибах земной коры (внутриконтинентальные моря типа Черного и Средиземного). От океанского типа отличается большей мощностью осадочного слоя до 20-25 км.

Проблема формирования земной коры .

По Виноградову- процесс формирования земной коры происходил по принципу зонной плавки . Суть процесса: вещество Протоземли, близкое к метеоритному, в результате радиоактивного прогрева расплавлялось и более легкая силикатная часть поднималась к поверхности, а Fe-Ni концентрировалась в ядре. Таким образом, происходило формирование геосфер.

Следует отметить, что земная кора и твердая часть верхней мантии объединяются в литосферу , ниже которой располагается астеносфера .

Тектоносфера - это литосфера и часть верхней мантии до глубин 700км (т.е. до глубины самых глубоких очагов землетрясений). Названа так потому, что здесь происходят основные тектонические процессы, определяющие перестройку этой геосферы.

Земная кора.

Земная кора в масштабе всей Земли представляет тончайшую пленку и по сравнению с радиусом Земли ничтожна. Она достигает максимальной толщины 75км под горными массивами Памира, Тибета, Гималаев. несмотря на маленькую мощность, земная кора имеет сложное строение.

Верхние ее горизонты довольно хорошо изучены при помощи бурения скважин.

Строение и состав земной коры под океанами и на континентах очень сильно различаются. Поэтому и принято выделять два основных типа земной коры – океаническую и континентальную.

Земная кора океанов занимает примерно56% поверхности планеты, и главной ее чертой является небольшая толщина – в среднем около 5-7 км. Но даже такая тонкая земная кора подразделяется на два слоя.

Первый слой – осадочный, представлен глинами, известковыми илами. Второй слой сложен базальтами – продуктами извержений вулканов. Мощность базальтового слоя на дне океанов не превышает 2 км.

Континентальная (материковая) земная кора занимает площадь меньше, чем океаническая, около 44% поверхности планеты. Континентальная кора толще океанической, ее средняя мощность 35-40км, а в области гор достигает 70-75 км. Она состоит из трех слоев.

Верхний слой слагают разнообразные осадки, их мощность в некоторых впадинах, например, в Прикаспийской низменности, составляет 20-22 км. Преобладают отложения мелководий – известняки, глины, пески, соли и гипс. Возраст пород 1,7 млрд.лет.

Второй слой – гранитный – он хорошо изучен геологами, т.к. имеются выходы его на поверхность, а также предпринимались попытки пробурить его, хотя попытки пробурить весь слой гранита оказались неудачными.

Состав третьего слоя не очень ясен. Предполагают, что он должен быть сложен породами типа базальтов. Мощность его составляет 20-25 км. В основании третьего слоя прослеживается поверхность Мохоровичича.

Повехность Мохо.

В 1909г. на Балканском полуострове, около г.Загреба, произошло сильное землетрясение. Хорватсякий геофизик Андрия Мохоровичич,изучая сейсмограмму, записанную в момент этого события, заметил, что на глубине примерно 30 км скорость волн существенно увеличивается. Данное наблюдение подтвердили и другие сейсмологи. Значит, существует некий раздел, ограничивающий снизу земную кору. Для его обозначения ввели особый термин – поверхность Мохоровичича (или раздел Мохо).

Мантия

Под корой на глубинах от 30-50 до 2900 км расположена мантия Земли. Из чего же она состоит? Главным образом из горных пород, богатых магнием и железом.

Мантия занимает до 82% объема планеты и подразделяется на верхнюю и нижнюю. Первая залегает ниже поверхности Мохо до глубины 670 км. Быстрое падение давления в верхней части мантии и высокая температура приводят к плавлению ее вещества.

На глубине от 400 км под материками и 10-150 км под океанами, т.е. в верхней мантии, был обнаружен слой, где сейсмические волны распространяются сравнительно медленно. Этот слой назвали астеносферой (от греч. “астенес” - слабый). Здесь доля расплава составляет 1-3%, более пластичная. Чем остальная мантия, астеносфера служит “смазкой”, по которой перемещаются жесткие литосферные плиты.

По сравнению с породами, слагающими земную кору, породы мантии отличаются большой плотностью и скорость распространения сейсмических волн в них заметно выше.

В самом “подвале” нижней мантии – на глубине 1000км и до поверхности ядра – плотность постепенно увеличивается. Из чего состоит нижняя мантия, пока остается загадкой.

Ядро.

Предполагают, что поверхность ядра состоит из вещества, обладающего свойствами жидкости. Граница ядра находится на глубине 2900км.

А вот внутренняя область, начинающаяся с глубины 5100км, ведет себя как твердое тело. Это обусловлено очень высоким давлением. Даже на верхней границе ядра теоретически рассчитанное давление составляет около 1,3 млн.атм. а в центре достигает 3 млн.атм. Температура здесь может превышать 10000 С. Каждый куб. см вещества земного ядра весит 12 -14 г.

Очевидно, вещество внешнего ядра Земли гладкое, почти как пушечное ядро. Но оказалось, что перепады “границы” достигают 260км.

Лист-конспект урока “Оболочки Земли. Литосфера. Земная кора.”

Тема урока. Строение Земли и свойства земной коры.

1. Внешние оболочки Земли:

Атмосфера - _______________________________________________________________

Гидросфера -_______________________________________________________________

Литосфера - ________________________________________________________________

Биосфера - _________________________________________________________________

2. Литосфера-____________________________________________________________

3. Строение Земли:

МЕТОДЫ ИЗУЧЕНИЯ ВНУТРЕННЕГО СТРОЕНИЯ ЗЕМЛИ.

Объектами , которые изучаетгеология, являются земная кора и литосфера. Задачи геологии:

Изучение вещественного состава внутренних оболочек Земли;

Изучение внутреннего строения Земли;

Изучение закономерностей развития литосферы и земной коры;

Изучение истории развития жизни на Земле и др.

Методы науки включают как собственно геологические, так и методы сопряженных наук (почвоведения, археологии, гляциологии, геоморфологии и проч.). В числе главных методов можно назвать следующие.

1. Методы полевой геологической съемки - изучение геологических обнажений, извлеченного при бурении скважин кернового материала, слоев горных пород в шахтах, изверженных вулканических продуктов, непосредственное полевое изучение протекающих на поверхности геологических процессов.

2. Геофизические методы - используются для изучения глубинного строения Земли и литосферы. Сейсмические методы , основанные на изучении скорости распространения продольных и поперечных волн, позволили выделить внутренние оболочки Земли. Гравиметрические методы , изучающие вариации силы тяжести на поверхности Земли, позволяют обнаружить положительные и отрицательные гравитационные аномалии и,следовательно, предполагать наличие определенных видов полезных ископаемых. Палеомагнитный метод изучает ориентировку намагниченных кристаллов в слоях горных пород. Осаждающиеся кристаллы ферромагнитных минералов ориентируются своей длинной осью в соответствии с направлениями силовых линий магнитного поля и знаками намагниченности полюсов Земли. Метод основан на непостоянстве (инверсии) знака полярности магнитных полюсов. Современные знаки намагниченности полюсов (эпоха Брюнес) Земля приобрела 700 000 лет назад. Предыдущая эпоха обратной намагниченности - Матуяма.

3. Астрономические и космические методы основаны на изучении метеоритов, приливно-отливных движений литосферы, а также на исследовании других планет и Земли (из космоса). Позволяют глубже понять суть происходящих на Земле и в космосе процессов.

4. Методы моделирования позволяют в лабораторных условиях воспроизводить (и изучать) геологические процессы.

5. Метод актуализма - протекающие ныне в определенных условиях геологические процессы ведут к образованию определенных комплексов горных пород. Следовательно, наличие в древних слоях таких же пород свидетельствует об определенных, идентичных современным процессах, происходивших в прошлом.

6. Минералогические и петрографические методы изучают минералы и горные породы (поиск полезных ископаемых, восстановление истории развития Земли).

В XVIII и XIX веках для измерения Земли астрономы использовали точный метод триангуляции.

При этом непосредственное измерение больших длин на Земле заменяется определением углов в системе треугольников, разбиваемых на выпуклой земной поверхности. Сопоставление таких измеренных дуг, проведенных и вдоль меридианов и по долготе, через различные материки, позволило составить представление о форме и действительных размерах твердой оболочки Земли.

Земля оказалась отличной от шара; только в самом грубом приближении можно принимать ее за шар с радиусом 6371 км. В действительности она сплюснута у полюсов в соответствии с законами вращения тел и теорией тяготения Ньютона. Полярный радиус почти на 21 км короче экваториального радиуса. Поэтому во втором приближении Землю можно считать немного сплюснутой сферой, так называемым сфероидом, или эллипсоидом вращения. Элементы этого эллипсоида служат основой для построения точных карт земной поверхности.

Мы приведем данные об эллипсоиде, которые были установлены в 1940 г. советскими учеными: экваториальный радиус равен 6378 км, полярный радиус - 6356,9 км. Поэтому длина меридиана Земли, т. е. окружности, проходящей через полюсы, равна 40 010 км, а площадь всей поверхности составляет 510 млн. км 2 . Из них на сушу приходится только 29%; остальная часть, т. е. почти три четверти всей поверхности, составляет гигантская площадь океанов и морей.

Тем не менее реальная форма Земли отличается и от эллипсоида; материки несколько выступают над поверхностью океанов, а суши оказывается значительно больше в Северном полушарии Земли, нежели в Южном. Выяснение точной фигуры Земли представляет громадный интерес. Поэтому ученые продолжают точные измерения методами геодезии, определяя стороны и углы треугольников и строя геодезические знаки, которые располагаются в вершинах этих треугольников. Производится измерение силы тяжести во всех доступных точках Земли, для чего в последнее время используются чрезвычайно точные гравиметры. Полученные данные позволяют не только судить о неоднородностях в земной коре, залежах полезных ископаемых, но и исследовать форму Земли.

Масса Земли (количество ее вещества) составляет 6000 млрд. млрд. т. Деля массу на объем, мы получаем среднюю плотность земного вещества, которая оказывается в 5,5 раза больше, чем воды. А так как средняя плотность у поверхности всего лишь 2,6 по отношению к воде, вещество внутренних областей Земли должно быть очень сильно уплотнено и соответствовать плотности железа или стали.

В последнее время для изучения размеров и формы Земли стали использовать искусственные спутники. На основе законов небесной механики астрономы умеют определять точные орбиты спутников и путем непрерывных наблюдений следят за всеми изменениями в их движении. Поэтому всегда можно знать, где, когда и на какой высоте пролетает спутник. Точные измерения положения спутника на небе, произведенные из нескольких точек Земли, позволяют судить о положениях самих наблюдателей, т. е. позволяют проверять геодезические данные о земной поверхности. Результаты получаются в ряде случаев более точными, чем при геодезических определениях.

Метод наблюдений спутников особенно важен при выяснении вопроса: смещаются ли материки друг относительно друга? Правда ли, что американский континент отошел в давно прошедшие времена от западных границ Европы и Африки, как это предполагают некоторые ученые? Ведь, действительно, линия восточного побережья Америки хорошо соответствует очертаниям западных берегов Европы и Африки. Для выяснения этого вопроса нужно большое количество точных наблюдений. Пройдет некоторое время, и ученые смогут дать ответ на вопрос о движении материков.

Ракеты и спутники все шире используются также для непосредственного наблюдения Земли с большой высоты, из межпланетного пространства. Все. видели замечательные цветные фотографии земной поверхности, снятые Г. С. Титовым с корабля-спутника «Восток-2». Уже ведется постоянная метеорологическая служба со спутников, оборудованных телевизионными установками. По изображениям на экранах земных телевизоров можно следить за состоянием погоды в различных районах Земли, изучать движение циклонов.

Приборы, поднимаемые на спутниках, регистрируют состояние магнитного поля вокруг Земли, количество и особенности космических частиц, метеорные частицы, ультрафиолетовое и рентгеновское излучение и многое другое. Использование спутников позволило в 1958-1959 гг. открыть существование короны Земли - двух или даже трех поясов частиц высокой энергии - быстрых протонов и электронов, удерживаемых земным магнитным полем. Эти радиационные пояса играют, по-видимому, очень большую роль в различных атмосферных явлениях и в жизни на Земле.

1.Методы изучения, используемые в геологии.

Геология изучает землю разных масштабов, с целью практического использования; методы изучения:

1. Главный метод наблюдение. Геологические исследования определённой территории начинаются с изучения и сопоставления горных пород, наблюдаемых на поверхности Земли в различных естественных обнажениях, а также в искусственных выработках (шурфах, карьерах, шахтах и др.);

2. Геологическое картирование (создание геологических карт);

3. Геологические исследования ; Методы непосредственного изучения недр не дают возможности познать строение Земли глубже, чем на несколько км (иногда до 20) от её поверхности.

4. Геофизические методы используются для изучения глубинного строения Земли и литосферы. Сейсмические методы, основанные на изучении скорости распространения продольных и поперечных волн, позволили выделить внутренние оболочки Земли

5.Гравиметрические методы , изучающие вариации силы тяжести на поверхности Земли, позволяют обнаружить положительные и отрицательные гравитационные аномалии и, следовательно, предполагать наличие определенных видов полезных ископаемых.

6.Палеомагнитный метод изучает ориентировку намагниченных кристаллов в слоях горных пород.

7.Микроскопический метод изучает структуру сложения, строения минералов и горных пород.

8.Рентгеноскопический метод позволяет провести исследования горных пород с помощью спектрального анализа.

9.Астрономические и космические методы основаны на изучении метеоритов, приливно-отливных движений литосферы, а также на исследовании других планет и Земли. Позволяют глубже понять суть происходящих на Земле и в космосе процессов.

10.Методы моделирования позволяют в лабораторных условиях воспроизводить геологические процессы.

2.Строение солнечной системы. Взаимовлияние космических тел.

Солнечная система – это система космических тел, которая кроме центрального светила – Солнца, включает в себя 8 больших планет, их спутники, множество маленьких планет, кометы, космическую пыль и мелкие метеорные тела, которые движутся в сфере преимущественного гравитационного действия Солнца.

Строение солнечной системы (является частью более крупной частью галактики) . Совершает вокруг центра галактики за 180-200 млн.лет. Солнечная система состоит из: 1.Солнца(раскаленный газовый шар;шар состоящий из газовых плаз; t (поверхности около 6тыс целсьсия)с глубиной температура повышается и может достичдо 20млн градусов.

2. планеты(8) делят на 2 вида: лежащие ближе к солнцу – внутренние, а другие внешне. Плутон (малая планета, астероид); ближайшие планеты к Солнцу: Меркурий, Венера, Земля, Марс. Каждая планета находится от другой на двойном расстоянии. Плотность вещества Земли: 5,52г/см; средняя плотность вещества планет гигантов 1г/см 3 . 3.каметы(достаточно крупные тела) 4. метеоры и метеориты-средний состав метеорита должен соответствовать составу Земли.

На планетах гигантах существует огромное количество углеводородов, чаще всего они образуют атмосферу.

Согласно закону всемирного тяготения, все тела Вселенной взаимно притягиваются с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Сила, с которой тела притягиваются к Земле, называется силой тяжести.

3. Общие физические свойства планеты Земля.

Форма Земли: Шар(эллипсоида вращения), Геоид – фигура земли с учетом силы тяжести. Ученый Эратосфен определил размеры земного шара(в стадиях) R э =6378245м(радиус экватора); Rп =6356863м(радиус полярный). Период обращения по орбите составляет 365,256 земных суток или 1 год. Средняя скорость движения по орбите – 29,8 км/с.

Период вращения вокруг оси – звездные сутки – 23h56m4,099s. Наклон земного экватора к орбите составляет 23°27′ и обеспечивает смену времен года.

К физическим свойствам Земли относят температурный режим (внутреннюю теплоту), сила тяжести, плотность и давление.

Масса Земли равна М = 5,974∙10 24 кг, средняя плотность 5,52 г/см 3 .

Сила, с которой тела притягиваются к Земле, называется силой тяжести.

Давление.

На уровне моря атмосфера оказывает давление силой 1 кг/см 2 (давление в одну атмосферу), а с высотой оно уменьшается. Приблизительно на 2/3 снижается давление на высоте около 8 км. Внутри Земли давление быстро растет: на границе ядра оно составляет около 1,5 млн. атмосфер, а его центре – до 3,7 млн. атмосфер.

4.Внутреннее строение Земли, метода его изучения .

При исследовании внутреннего строения нашей планеты чаще всего проводят визуальные наблюдения естественных и искусственных обнажений горных пород, бурение скважин и сейсмическую разведку.

Обнажение горных пород – это выход пород на земную поверхность в оврагах, долинах рек, карьерах, шахтных выработках, на склонах гор. Бурение скважин позволяет глубже проникнуть в толщу Земли. Сейсмический метод дает возможность «проникнуть» на большие глубины.

Строение: Если бы Земля была однородным телом, то сейсмические волны распространялись бы с одинаковой скоростью, прямолинейно и не отражались. Литосфера, каменная оболочка твердой Земли, имеющая сферическую форму. Глубина литосферы достигает более 80 км, в нее включают и верхнюю мантию –астеносферу, служащую субстратом, на котором расположена основная часть литосферы. Верхнюю часть литосферы называют земной корой. Внешняя граница земной коры – поверхность ее соприкосновения с гидросферой и атмосферой, нижняя проходит на глубине 8-75 км и называется слоем Строение земной коры неоднородно. Верхний слой, мощность которого колеблется от 0 до 20 км, сложен осадочными породами – песком, глиной, известняками и др. Ниже, под материками, расположен гранитный слой, Еще ниже расположен слой, в котором сейсмические волны распространяются со скоростью 6,5 км/с- его называют базальтовым. Мантия. Это промежуточная оболочка, расположенная между литосферой и ядром Земли. Ядро. В ядре различают две части: внешнюю, до глубины 5 тыс. км, и внутреннюю, до центра Земли. Внешнее ядро жидкое, так как через него не проходят поперечные волны, внутреннее – твердое. Вещество ядра, особенно внутреннего, сильно уплотнено и по плотности соответствует металлам, поэтому его и называют металлическим.

5.Гравитационное поле Земли, его связь с составом и строением земных недр.

Гравитационное поле – поле силы тяжести. Гравитационное поле Земли. Гравитационными исследованиями установлено, что земная кора и мантия под воздействием дополнительных нагрузок прогибаются. Например, если земная кора всюду имела бы одинаковую мощность и плотность, то следовало бы ожидать, что в горах (где масса пород больше) действовала бы большая сила притяжения, чем на равнинах или в морях. В 1850-х годах были предложены две новые гипотезы. В соответствии с первой гипотезой , земная кора состоит из блоков пород разных размеров и плотности, плавающих в более плотной среде. Основания всех блоков располагаются на одном уровне, а блоки, характеризующиеся низкой плотностью, должны быть большей высоты, чем блоки, имеющие высокую плотность. Горные сооружения принимались за блоки низкой плотности, а океанические бассейны – высокой (при одинаковой общей массе тех и других). Согласно второй гипотезе , плотность всех блоков одинакова и плавают они в более плотной среде, а различная высота поверхности объясняется их разной мощностью. Она известна как гипотеза горных корней, поскольку чем выше блок, тем глубже он погружен во вмещающую среду. В 1940-х годах были получены сейсмические данные, подтверждающие представление об утолщении земной коры в горных областях. Изостазия. Всякий раз, когда на земную поверхность поступает дополнительная нагрузка (например, в результате осадконакопления, вулканизма или оледенения), земная кора прогибается и проседает, а когда эта нагрузка снимается (в результате денудации, таяния ледниковых покровов и пр.), земная кора поднимается. Вулканизм. Происхождение лавы. В некоторых районах земного шара магма во время вулканических извержений изливается на земную поверхность в виде лавы. Многие вулканические островные дуги, по-видимому, связаны с системой глубинных разломов.

6. Магнитное поле Земли.

Магнитное поле Земли или геомагнитное поле - магнитное поле , генерируемое внутриземными источниками. На небольшом удалении от поверхности Земли, порядка трёх её радиусов, магнитные силовые линии имеют диполеподобное расположение. Эта область называется плазмосферой Земли. По мере удаления от поверхности Земли усиливается воздействие солнечного ветра : со стороны Солнца геомагнитное поле сжимается, а с противоположной, ночной стороны, оно вытягивается в длинный «хвост» 1. Плазмосфера Заметное влияние на магнитное поле на поверхности Земли оказывают токи в ионосфере . Это область верхней атмосферы, простирающаяся от высот порядка 100 км и выше. Содержит большое количество ионов . Плазма удерживается магнитным полем Земли, но её состояние определяется взаимодействием магнитного поля Земли с солнечным ветром, чем и объясняется связь магнитных бурь на Земле с солнечными вспышками. 2.Параметры поля Точки Земли, в которых напряжённость магнитного поля имеет вертикальное направление, называют магнитными полюсами . Таких точек на Земле две: северный магнитный полюс и южный магнитный полюс .

7.Внутреннее тепло Земли

Внутренние источники тепла Земли менее значительны по мощности, чем внешние. Считается, что основными источниками являются: распад долгоживущих радиоактивных изотопов (уран-235 и уран-238, торий-232, калий-40), гравитационная дифференциация вещества, приливное трение, метаморфизм, фазовые переходы.Средняя плотность теплового потока по земному шару составляет 87±2 мВт/м² или (4,42±0,10) 1013 Вт в целом по Земле], то есть примерно в 5000 раз меньше, чем средняя солнечная радиация. В океанских районах этот показатель составляет в среднем 101±2 мВт/м², в континентальных - 65±2 мВт/м²[. В глубоководных океанических желобах она меняется в пределах 28-65 мВт/м², на континентальных щитах - 29-49 мВт/м², в областях геосинклиналей и срединно-океанических хребтах может достигать 100-300 мВт/м² и более.. Около 60 % теплового потока (2,75 1013 Вт) приходится на внутренние источники тепла, остальные 40 % обусловлены остыванием планеты.Согласно измерениям нейтринного потока из недр Земли, на радиоактивный распад приходится 24 ТВт (2,4 1013 Вт) внутреннего тепла.

Геотермическая ступень- углубление в метрах, дающих увеличение температуры в 1градус. 111м-самая большая геометрическая ступень(Африка). Геотермический градиент- прирост температуры, на единицу длины.)

8.Понятие о минералах, формах их нахождения в природе, процессах образования.

Минералы - это природные химические соединения(либо самородные элементы). преимущественно кристаллической структуры, образовавшиеся на Земле как результат геологических и геохимических процессов. Минералоиды – не настоящие минералы. В кристаллических веществах частицы расположены упорядочено(энергия расходится на распад кристаллической решетки) Формы нахождения минералов: кристаллы; друзы, или щетки – группы кристаллов, имеющих общее основание; зернистые, сложенные кристаллами неправильной формы или зернами; землистые массы - рыхлые, иногда порошковидные скопления; конкреции, секреции (пустоты горных пород); натёчные (сталактитами растут сверху вниз, растущие вверх со дна пещер – сталагмитами ). Примазки или присыпки – тонкие пленки 1-ого вещества на стенках другого. Процесс образования минералов: пневматолитовый процесс- процесс образования магмы; осадочные процессы: гипергенез- перерождение(выветривание); химическое осаждение; органогенное осаждение- образование новых минералов.

9. Понятие о горных породах, условия их залегания.

Горные породы – природные минеральные агрегаты. Горные породы: Магматические, Метаморфические, Осадочные

Магматические – Эффузивные, интрузивные.

Осадочные горные породы образуются на земной поверхности и вблизи неё в условиях относительно низких температур и давлений в результате преобразования морских и континентальных осадков

Метаморфические горные породы образуются в толще земной коры в результате изменения (метаморфизма) осадочных или магматических горных пород. Факторами, вызывающими эти изменения, могут быть: близость застывающего магматического тела и связанное с этим прогревание метаморфизуемой породы; воздействие отходящих от этого тела активных химических соединений, в первую очередь различных водных растворов (контактовый метаморфизм), или погружение породы в толщу земной коры, где на неё действуют факторы регионального метаморфизма - высокие температуры и давления .

Типичными метаморфическими горными породами являются гнейсы , разные по составу кристаллические сланцы , контактовые роговики ,скарны , амфиболиты , магматиты и др. Различие в происхождении и, как следствие этого, в минеральном составе горных пород резко сказывается на их химическом составе и физических свойствах.

10. Особенности залегания осадочных пород.

Осадочные горные породы образуются на земной поверхности и вблизи неё в условиях относительно низких температур и давлений в результате преобразования морских и континентальных осадков. По способу своего образования осадочные породы подразделяются на три основные генетические группы: обломочные породы (брекчии , конгломераты , пески , алевриты) - грубые продукты преимущественно механического разрушения материнских пород, обычно наследующие наиболее устойчивые минеральные ассоциации последних; глинистые породы -дисперсные продукты глубокого химического преобразования силикатных и алюмосиликатных минералов материнских пород, перешедшие в новые минеральные виды; хемогенные, биохемогенные и органогенные породы - продукты непосредственного осаждения из растворов (например, соли), при участии организмов (например, кремнистые породы), накопления органических вещества (например, угли) или продукты жизнедеятельности организмов (например, органогенные известняки). Промежуточное положение между осадочными и вулканическими породами занимает группа эффузивно-осадочных пород. Между основными группами осадочных пород наблюдаются взаимные переходы, возникающие в результате смешения материала разного генезиса. Характерной особенностью осадочных горных пород, связанной с условиями образования, является их слоистость и залегание в виде более или менее правильных геологических тел (пластов). Хемогенные породы(химически осадочная известь)- известняки, мергели, глина, доломиты. Гипс, ангидрит, каменная соль, известняковый туф- образуется на выходе минеральных источников. 2.Органогенные породы- известняки органогенные(ракушечники), мел, диатолиты, торф, угли. 3.Обломочные породы(различаются по размерам обломков): >1мм(грубые, обломки), >10см(глыбы валуны), 10-1см(щебен галька), 1-0,1см(дресва, гравий) цементируются состав цемента: глина, известь, кремнезём, железистый цемент, гипс, ангидрит, соль.

11.Разрывные дислокации в горных породах.

а – сброс, б – ступенчатый сброс, в – взброс, г – надвиг, д – грабен, е – горст; Сброс – опускание, а взброс – подъем одной части толщи пород относительно другой. Грабен – возникает, когда участок земной коры опускается между двумя крупными разрывами. Горстформа , обратная грабену. Сдвиг и надвиг , в отличие от предыдущих форм разрывных дислокаций, возникают при смещениях толщ пород в горизонтальной (сдвиг) и по сравнительно наклонной (надвиг) плоскости.

12.Складчатые дислокации в горных породах

Складчатые дислокации – это волнообразные изгибы слоев горных пород, составляющих земную кору, образующиеся под влиянием горизонтальной составляющей тектонических сил. Складчатые дислокации различаются по форме, размерам, взаимному сочетанию и возрасту. В каждой складке выделяется ядро, крылья и замок. Различают следующие виды складок:

Антиклинали прямые,- Синклинали прямые,- Антиклинали и синклинали наклонные,- Опрокинутые складки; Изогипсы- линии одинаковой глубины залегания. Антиклинальные складки: Округлые складки симметричные, острые складки, сундучные складки, изоклинальные складки, веерообразные; классификация складок по положению осевой поверхности: наклонная или косая складка ассиметричная, симметричная, опрокинутая складка; классификация по отношению осей: брахиформные укороченные складки; изометричные;

13.Абсолютный возраст горных пород.

АБСОЛЮТНЫЙ ВОЗРАСТ ГОРНЫХ ПОРОД - возраст, выраженный в абсолютных единицах времени (годах, миллионах лет и т. д.) Определение абсолютного возраста горных пород позволило установить длительность эр, периодов, веков, эпох, а также возраст земной коры. Возраст Земли как планеты, судя по возрасту древнейших минералов и метеоритов, определяется приблизительно в 4-5 млрд. лет.

Земная кора состоит из горных пород, залегающих слоями. Если залегание пород не нарушено, то чем они выше, тем слой моложе. Самый верхний слой образовался позднее всех лежащих ниже.

Определение возраста горных пород позволяет установить время, прошедшее с какого-то момента в истории Земли. Определение абсолютного возраста горных пород стало возможно лишь в XX веке, когда для этих целей начали использовать процесс распада радиоактивных элементов , содержащихся в породе. Этот метод основан на изучении природного распада радиоактивных элементов, под которым понимают способность некоторых веществ распадаться с испусканием элементарных частиц. Данный процесс идет с постоянной скоростью и не зависит от изменения внешних условий. По содержанию в горной породе радиоактивного элемента и продуктов его распада устанавливается абсолютный возраст горных пород в миллионах или тысячах лет.

Не радиологические методы уступают по точности ядерным.

Соляной метод был применен для определения возраста Мирового океана. Он основан на предположении, что воды океана были первоначально пресными, то, зная современное количество солей с континентов, можно определить время существования Мирового океана (~ 97 млн. лет).

Седиментационный метод основан на изучении осадочных пород в морях. Зная объем и мощность морских отложений в з.к. в отдельных системах и объем минерального вещества, ежегодно сносимого в моря с континентов можно вычислить продолжительность их наполнения.

Биологический метод базируется на представлении о сравнительно равномерном развитии орг. мира. Исходный параметр – продолжительность четвертичного периода 1,7 – 2 млн. лет.

Метод подсчета слоев ленточных глин, накапливающихся на периферии тающих ледников. Глинистые осадки откладываются зимой, а песчаные летом и весной, т.е. каждая пара таких слоев результат годичного накопления осадков (последний ледник на Балтийском море прекратил свое движение 12 тысяч лет назад).

14.Относительный возраст горных пород.

Относительный возраст позволяет определить возраст пород относительно друг друга, т.е. устанавливать, какие породы древне, какие моложе. Для определения относительного возраста используют два метода: геолого-стратиграфический (стратиграфического, литологического, тектонического, геофизических) и палеонтологический. Стратиграфический метод применяют для толщ с ненарушенным горизонтальным залеганием слоев. При этом считают, что нижележащие слои (породы) являются более древними, чем вышележащие.

Палеонтологический метод позволяет определять возраст осадочных пород по отношению друг к другу независимо от характера залегания слоев и сопоставлять возраст пород, залегающих на разных участках. В основу метода положена история развития органической жизни на Земле. Животные и растительные организмы развивались постепенно, последовательно. Остатки вымерших организмов захоронились в тех осадках, которые накапливались в тот отрезок времени, когда они жили. Криптозон(Архей, Протерозой), Фанерозой(кайнозой. Мезозой. Полеозой). Полеозой(Кембрий, Ордовик, Силур, Девон, Карбоновая, Пермь) Мезозой(Юра, Триас, Меловая), Кайнозой(Палеоген, Неогеновая, Четвертичная)

15. Понятие об эндогенных и экзогенных геологических процессах.

Геологические процессы делятся на две взаимосвязанные между собой группы: ЭНДОГЕННЫЕ (древнегреч. endon - внутри, т. е. изнутри рожденные) и ЭКЗОГЕННЫЕ (древнегреч. ex - вне, т. е. извне рожденные).

Эндогенные процессы - созидатели, они создают горы, поднятия, впадины и котловины, создают и порождают горные породы, минералы и полезные ископаемые. Экзогенные процессы - разрушители всего того, что создают эндогенные процессы. При этом, правда, разрушая, они создают свой рельеф и новые породы и минералы.

К эндогенным процессам относятся: магматизм , метаморфизм , тектоника , землетрясения (сейсмика).

Метасоматоз (метаморфизм), для которого характерно заметное изменение химического состава породы, в результате переноса компонентов флюидом. Флюидом называются летучие компоненты метаморфических систем. Это первую очередь вода и углекислый газ.

Эндогенные процессы черпают свою энергию из недр Земли, извлекая ее из атомных, молекулярных и ионных реакций, внутреннего давления (гравитации) и разогрева отдельных участков земной коры от перемещения ее слоев под действием изменения скорости вращения Земли.

К экзогенным процессам относятся: работа ветра, подземных и поверхностных текучих вод рек и временных потоков, льда, морей, озер и т. п. Геологическая работа при этом сводится в основном к разрушению горных пород, переносу обломков и отложению их в виде осадков.

Работа всех экзогенных факторов, связанная с разрушением и переносом, называется ДЕНУДАЦИЕЙ. Агентами или факторами денудации: выветриванием , дефляцией (выдувание и развеивание), оползнями , обвалами , карстом , эрозией , экзарацией (exeratio - выпахивание, например ледником), морской и озерной абразией и др. В результате успешной деятельности (из-за вяло текущих эндогенных процессов или их полном затухании) всех этих факторов экзогенной деятельности на месте горного рельефа, всегда создается ПЕНЕПЛЕН, «предельная равнина», или почти равнинная слабохолмистая местность с плоскими столовыми водораздельными частями. Экзогенные процессы получают свою энергию от солнца и из космоса, успешно используют силу тяжести, климат и жизнедеятельность организмов и растений.

16. Денудация, пенепленизация и аккумуляция.

Денудация (от лат. denudatio - обнажение) - совокупность процессов сноса и переноса (водой, ветром, льдом, непосредственным действием силы тяжести) продуктов разрушения горных пород в пониженные участки земной поверхности, где происходит их накопление.

На темпы и характер денудации большое влияние оказывают тектонические движения. От соотношения денудации и движений земной коры зависит направление развития рельефа суши. При преобладании процессов разрушения и денудации над эффектом тектонического поднятия происходит постепенное снижение абсолютных и относительных высот и общее нивелирование рельефа. Особенно быстро процесс идёт в горах, где большие уклоны земной поверхности способствуют сносу. В результате длительного преобладания процессов денудации целые горные страны могут быть полностью разрушены и превращены в волнистые денудационные равнины (пенеплены).

Такая пенепленизация (выравнивание) рельефа возможна лишь теоретически. В действительности изостазические поднятия компенсируют потери за счет денудации, а некоторые породы настолько прочны, что практически не поддаются разрушению. АККУМУЛЯЦИЯ в геологии - накопление минеральных веществ или органических остатков на дне водоёмов и на поверхности суши. Процесс, противоположный денудации и зависящий от неё. Области аккумуляции - это преимущественно пониженные пространства, чаще тектонического (прогибы, впадины и т.д.), а также денудационного (долины, котловины) происхождения. Мощность аккумулированных осадков зависит от интенсивности денудации и активности прогибания.

Различают аккумуляцию наземную (гравитационная, речная, ледниковая, водно-ледниковая, морская, озёрная, эоловая, биогенная, вулканогенная) и подводную (подводно-оползневая, прибрежно-морская, дельтовая, рифогенная, вулканическая, хемогенная и т.д.). С процессами аккумуляции связано образование различных типов экзогенных месторождений полезных ископаемых (в т.ч.россыпей).

17. Современные вулканы, их географическое распределение.

Современные вулканы делятся на 2 разновидности: 1. действующие(около 400; хотя бы однажды извергались) 2. уснувшие вулканы(потухшие). Действующие вулканы расположены в нескольких зонах одна из них на берегу Тихого океана- тихоокеанское огненное кольцо, восточная африканская зона- протягивается с севере на юг, среднеатлантический пояс. По побережью Средиеземного моря, через карпы(Крым, Кавказ, Гемолаи, Юго-восточная Азия, малайский полуостров- Средиземноморский пояс)

18. Особенности состава и строение магматических тел.

Магматические породы- ,Особенности химического состава: SiO 2 - кварц; 1 . «Кислые породы» кварц> 65%- светлая окраска глубинные породы- граниты(крупнозернистые породы) кварц, ортоколаз, обычные минералы, роговая обманка, биотит. Поверхностные породы- состав:стекло; 2. «Среднекислотные» кварц= 65-25%-среднее количество глубинные- диориты, сиениты(кварц <30%? Ортокалаз, роговая обманка,биотит) поверхностные породы: андезит, порфир, трахит, порфир.; 3. «Основные» – темная окраска. Глубинные породы- габбро(темная окраска); Поверхностные породы- базальты, диабазы(оливины, пироксены, полевые шпаты); 4. «Ультраосновные» кварц<25%- состав-оливины, пироксены; Оливиниты, пироксениты, перидотиты, Обсидиан- вулканическое стекло; пемза- вулканическая стекловатая масса%;

19. Условия залегания и формы магматических тел.

20. Основные факторы и типы метаморфизма.

Метаморфизм - это процесс изменения горных пород без правления под воздействием давления, температуры и т.д. Давление – динамический метаморфизм. Температура – температурный(термальный) метаморфизм. Eh , Ph - химические изменения метасоматические, если главным является температура-контактовый , если давление – стрессовый динамический; Главные разновидности метаморфисеких пород : Регрессивный метаморфизм (или диафторез) характеризуется замещением высокотемпературных минералов низкотемпературными. Образующиеся в этом случае продукты метаморфизма называются диафторитами. При определенных физико-химических условиях в обстановке регионального метаморфизма возникает ультраметаморфизм. Образование ультраметаморфических пород происходит при существенном значении расплавов. Факторами ультраметаморфизма являются высокая температура, химическая активность воды, а также привнос и вынос веществ.

Контактовый (контактово-термальный) метаморфизм проявляется во внешних экзоконтактовых ореолах интрузивов под воздействием тепла, выделяемого остывающим магматическим расплавом, и происходит при относительно низких давлениях, по существу без привноса и выноса вещества, то есть носит изохимический характер.

Динамометаморфизм (катакластический метаморфизм) развивается в зонах разрывных нарушений под воздействием одностороннего давления (стресса) в условиях невысоких температур и приводит к дроблению и перетиранию горных пород.

21.Тектонические движения земной коры. Принципы классификации тектонических движений.

Тектонические движения, классификация : 1.по направлению вверх или вниз – радиальные (вертикальные); тангецианальные (горизонтальные);2. деформации(складчатые, разрывные(горизонтальные, сочетание горизонтальных и вертикальных). Эпейрогенические движения(обширные, плоские территории, поперечные 10-100км). Орогенические движения – рождаются в горах(складчатые). Свойства тектонических движений :

1. взаимосвязи и взаимозависимость; 2.Непрерывность и повсеместность; 3. Волновой и колебательный характер. Для тектонических движений начали определять тенденцию движения, поднятия и отпускания. Классификация тектонических движений : По времени: 1. Древние (за пределами 15млн лет); 2. Новейшие(15млн. лет-10тыс. лет от части сохраненные в рельефе результаты новейших движений в мега рельефе, горы Альпы, Кавказа); 3.современные-10тыс.лет-ныне;

22. Землетрясение. Понятие о гипоцентре, эпицентральной зоне. Сила землетрясения.

Землетрясение - быстрые внезапные сотрясения земной коры ощущаемые на поверхности (порождаются тектоническими движениями). Продольные и поперечные (звуковые волны). Денудационные землетрясения (ненастоящие)- вызванные вулканическими взрывами (не сильные); Искусственные землетрясения - вызывается ядерным взрывом. Части землетрясения: эпицентр землетрясения; гипоцентр землетрясения – центр землетрясения; очаг землетрясения; эпицентральная зона; изосейста(ограничивают зоны разной силой землетрясения). Сила землетрясения - принимают условные показатели(изменение природных показателей земли, поверхности). Шкалы землетрясения: Рихтера; Гетербенга. 1963г- шкала MSK-63? 12 бальная шкала (1-2б-неошутимые землетрясения происходит на земле около 1млн. в год; Сейсмограф - работает в постоянном режиме ожидания(фиксирование землетрясений); 3-4б -ощущается человеком, который сидит спокойно, слабые около 100тыс в год; 5-6б - ощущается всеми людьми, но не ощущаются если ехать на автотранспорте, средние около 10тыс в год; 7-8б - разрушительные землетрясения (вызывают сильные разрушения. Дома рушатся полностью (старой постройки, появление оползней, изменяется уровень грунтовых вод (исчезают некоторые источники, но появляются новые) около 1000 в год.; 9-10б - катастрофические (массовое проявление обвалов и оползней. Появление более крупных трещин) в лесных районах появляется новый лес около 100 в год;

11-12б-полная катастрофа (землетрясения 1755г- португалия, 1973г- Перуанское землетрясение)около 10 в год;

Эпицентр землетрясения (- центральная поверхностная точка очага землетрясения

23. Дефляция, коррозия. Эоловый перенос и аккумуляция .

Дефляцией называется разрушение, раздробление и выдувание рыхлых горных пород на поверхности Земли вследствие непосредственного давления воздушных струй. Разрушительная способность воздушных струй увеличивается в случаях, когда они насыщены водой или твердыми частицами - песком и др. Разрушение с помощью твердых частиц носит название коррозии (лат. «корразио» - обтачивание). Дефляция наиболее сильно проявляется в узких горных долинах, в щелевидных расселинах, в сильно нагреваемых пустынных котловинах, где часто возникают пыльные вихри. Они подхватывают подготовленный физическим выветриванием рыхлый материал, поднимают его вверх и удаляют, вследствие чего котловина все более углубляется. В пустынном Закаспии (СССР) одна из таких котловин - Карагие - имеет глубину до 300 м, дно ее лежит ниже уровня Каспийского моря. Многие котловины выдувания в Ливийской пустыне в Египте углубились на 200-300 м и занимают огромные пространства. Так, площадь впадины Кат-тара 18 000 км2. Большую роль в формировании высокогорной котловины Дашти-Навар в Центральном Афганистане сыграл ветер.

Эоловый перенос - Перенос частиц ветром совершается во взвешенном состоянии или путём перекатывания, в зависимости от скорости ветра и размера частиц. Во взвешенном состоянии переносятся глинистые , пылеватые и тонкопесчаные частицы. Песчаные частицы переносятся в основном перекатыванием по земле, иногда перемещаются на небольшой высоте. При уменьшении скорости ветра и других благоприятных условиях происходит отложение переносимого материала (аккумуляция) - образуются ветровые (эоловые) отложения. Современные эоловые отложения обозначают на картах eolQ4, в большинстве случаев это накопления песка и пыли. Аккумуляция - процесс накопления рыхлого минерального материала и органических остатков на поверхности суши и на дне водоемов. Аккумуляция происходит у подножия склонов, в долинах и других отрицательных формах рельефа различного размера: от карстовых воронок до крупных прогибов и впадин тектонического происхождения, где аккумулирующиеся отложения образуют мощные толщи, постепенно превращающиеся в осадочные горные породы. На дне океанов , морей, озер и других водоемов аккумуляция есть важнейший экзогенный процесс . Коррозия (от лат. «corrado» - скоблю, соскребаю) – процесс механического истирания горных пород обломочным материалом, переносимым ветром. Заключается в обтачивании, шлифовании, и высверливании горных пород.

24. Процессы выветривания. Типы выветривания. Коры выветривания .

Выветривание – это совокупность процессов разрушения горных пород и минералов в приповерхностном слое земной коры и на земной поверхности. В условиях земной поверхности горные породы и слагающие их минералы испытывают разрушающее воздействие колебаний температур, действия воды, кислорода, углекислоты, жизнедеятельности животных и растительных организмов. Различают физическое , химическое и биологическое выветривание , которые могут сопровождать друг друга при благоприятных к тому условиях при постоянном воздействии сил гравитации и электромагнитного поля Земли. При химическом выветривании изменяется химический состав горных пород и минералов, неустойчивых в условиях земной поверхности. Химически активные компоненты Н 2 О распадается Н + ОН - FeS2 +H2O—Fe(OH)2 + H2SO3; H2O+CO2—H2CO3(угольная кислота); При физическом выветривании происходит только механическое разрушение горной породы, распадение ее на обломки и отдельные минералы (дезинтеграция) с дальнейшим раздроблением их и перетиранием при транспортировке к участкам их накопления – долинам рек, морским и озерным бассейнам.; Коры выветривания – континентальная геологическая формация, образовавшаяся на земной поверхности в результате изменения исходных горных пород под воздействием жидких и газообразных атмосферных и биогенных агентов. Продукты изменения, оставшиеся на месте своего образования, называют остаточной корой выветривания , а перемещённые на небольшое расстояние, но не потерявшие связь с материнской породой – переотложенной корой выветривания . Кора выветривания зависит от климата.

25. Карст, суффозия. Оползни. Грязевой вулканизм.

Суффозия - вынос мелких минеральных частиц породы фильтрующейся через неё водой. Процесс близок к карсту , но отличается от него тем, что суффозия является преимущественно физическим процессом и частицы породы не претерпевают дальнейшего разрушения. Одна из характеристик размываемости грунтов. Виды суффозии: Механическая - вода при фильтрации отрывает и выносит целые частицы (глинистые , песчаные). Химическая - вода растворяет частицы породы (соли , гипс) и выносит продукты разрушения.

Химико-физическая - смешанная (часто происходит в лёссе). Карст (от нем. Karst , по названию известнякового плато Крас в Словении) - совокупность процессов и явлений, связанных с деятельностью воды и выражающихся в растворении горных пород и образовании в них пустот, а также своеобразных форм рельефа , возникающих на местностях, сложенных сравнительно легко растворимыми в воде горными породами - гипсами , известняками , мраморами , доломитами и каменной солью . Виды карста: По глубине уровня подземных вод различают карст глубокий и мелкий . Различают также «голый» , или средиземноморский карст , у которого карстовые формы рельефа лишены почвенного и растительного покрова (например, Горный Крым), и «покрытый» или среднеевропейский карст , на поверхности которого сохраняется кора выветривания и развит почвенный и растительный покров.

Карст характеризуется комплексом поверхностных (воронки , карры , желоба , котловины , каверны и др.) и подземных (карстовые пещеры , галереи, полости, ходы) форм рельефа. Переходные между поверхностными и подземными формами - неглубокие (до 20 м) карстовые колодцы , естественные туннели, шахты или провалы. Карстовые воронки или иные элементы поверхностного карста, через которые в карстовую систему уходят поверхностные воды, называются поноры . Оползень - отделившаяся масса рыхлых пород , медленно и постепенно или скачками оползающая по наклонной плоскости отрыва, сохраняя при этом часто свою связанность и монолитность и не опрокидывающаяся. Оползни возникают на склонах долин или речных берегов, в горах, на берегах морей, самые грандиозные на дне морей. Наиболее часто оползни возникают на склонах, сложенных чередующимися водоупорными и водоносными породами. Смещение крупных масс земли или породы по склону или клифу вызывается в большинстве случаев смачиванием дождевой водой грунта так, что масса грунта становится тяжелой и более подвижной. Может вызываться также землетрясениями или подрывающей работой моря. Силы трения, обеспечивающие сцепление грунтов или горных пород на склонах, оказываются меньше силы тяжести, и вся масса горной породы приходит в движение.

Подобный тип вулканов встречается в основном в нефтеносных и вулканических областях, часто являются фумаролами , проходящими сквозь слои глины и вулканического пепла . Выделяющиеся вместе с грязью газы могут самовозгораться, образуя факелы.

Распространены в бассейнах Каспийского (Апшеронский полуостров и восточная Грузия), Чёрного и Азовского морей (Таманский и Керченский полуострова), в Европе (Италия , Исландия), в Новой Зеландии и Америке. Крупнейшие грязевые вулканы имеют диаметр 10 км и высоту 700 м. При возникновении в заселённых районах могут существенно влиять на хозяйственную деятельность человека, как, например, грязевой вулкан в Сидоарджо , возникший в 2006 году на острове Ява . На Таманском полуострове известны вулканы на горах Миска и Гнилая в Темрюке , а также вулкан у станицы Голубицкой с лечебной грязью . Эти вулканы - объекты посещения экскурсий из Анапы и других курортов. По количеству грязевых вулканов первое место в мире занимает Азербайджан . Из около 800 известных вулканов здесь имеется около 350.

26. Грунтовые и пластовые воды. Артезианские воды.

Грунто́вая вода́ - гравитационная вода первого от поверхности Земли постоянно существующего водоносного горизонта, расположенного на первом водоупорном слое. Имеет свободную водную поверхность и обычно над ней отсутствует сплошная кровля из водонепроницаемых пород

Грунтовые воды- накопленные воды. Инфильтрация- профильтровавшиеся воды Пластовые воды- напорные воды. Находящиеся под каким то давлением. Гидростатическое давление P= gh.

36.Геологическая деятельность льда. Типы льда. Фирн. Глетчер. Ледники горные

Ледники – движущиеся массы льда, возникающие на суше в результате накопления и преобразования твёрдых атмосферных осадков.
Современные ледники занимают около 11% поверхности суши (16,1 млн. км 2). В них заключено более 24 млн. км 3 пресной воды, что составляет почти 69% всех её запасов. Объём воды, заключённый во всех ледниках составляет, соответствует сумме атмосферных осадков, выпадающих на Землю за 50 лет, или стоку всех рек за 100 лет. Образование ледников возможно там, где в течение года твёрдых осадков выпадает больше, чем успевает за это время растаять и испариться. Уровень, выше которого годовой приход твердых атмосферных осадков больше, чем расход называется снеговой линией . Высота снеговой линии зависит от климатических условий: в полярных областях она располагается очень низко (в Антарктиде – на уровне моря), в тропических областях – выше 6000 м. Выше снеговой линии располагается область питания ледника, где происходит накопление снега и его последующее превращение в фирн и, затем, в глетчерный (ледниковый) лёд. Фирн представляет собой плотный зернистый снег, образовавшийся под давлением вышележащих слоев, поверхностного таяния и вторичного замерзания воды. Дальнейшее уплотнение фирна, приводящее к исчезновению воздушных промежутков между зёрнами, превращает его в лёд. Глетчер – ледниковый лед плотный прозрачный(часто нашпигован обломками горных пород). Морена - обломочный материал переносимый глетчерами. Типы ледников : Покровные ледники, горно-покровные ледники, горные ледникиледник, занимающий понижения рельефа в горах . Область питания горного ледника расположена выше снеговой линии, по долине спускается язык ледника, конец которого расположен ниже снеговой линии. Движение льда происходит главным образом под действием силы тяжести вниз по долине или по склону. (покровные ледники отличаются от горных: питание происходит на всей поверхности; масштаб;)

37.Понятие о факциях. Литогенез и его стадийность

Исходя из рассмотрения генетических типов осадков в океанах, морях, реках и озерах устанавливается определенная закономерность их распределения в зависимости от физико-географических условий рельефа дна водоемов, подвижности и температуры воды, степени удаленности от континента, характера распределения различных организмов и других факторов. В одно и то же время в разных условиях формируются различные по генезису и составу типы осадков. Так, например, в пределах области шельфа гумидных областей, при значительном поступлении осадочного материала с континента будут откладываться преимущественно терригенные осадки. В то же время в тропических зонах при незначительном поступлении терригенного материала в мелководной области шельфа развиваются коралловые рифы. Одновременно в абиссальной части океана, удаленной от берега, могут накапливаться органогенные (планктогенные) и полигенные осадки. Приведенные данные указывают, что существует тесная и многосторонняя связь осадкообразования со средой. Следовательно, изучая осадок, его состав, закономерности площадного развития и включенную в него фауну, можно восстановить условия и время его образования, а это, в свою очередь, имеет большое значение для анализа древних отложений и восстановления палеогеографических обстановок их формирования в различные этапы геологического развития. Впервые на это было обращено внимание в первой половине XIX в. швейцарским геологом А. Гресли при изучении Юрских гор Швейцарии, установившим закономерную смену состава отложений одновозрастных горизонтов. Им было введено понятие фация . Под фациями А. Гресли понимал отложения разного состава, имеющие одинаковый возраст и замещающие друг друга по площади (по горизонтали). В настоящее время понятие о фациях пользуется всеобщим признанием. Значительная часть исследователей считают, что фация – это горные породы (осадки), возникшие в определенной физико-географической обстановке и отличающиеся от состава и условий образования смежных одновозрастных пород. Несколько иначе трактуется понятие "фация" В.Т. Фроловым (1984). Однако во всех случаях подчеркивается четкая взаимосвязь нескольких сторон: 1) литологический состав породы (осадка) и соответствующие ей органические остатки; 2) физико-географическая обстановка седиментации; 3) геологический возраст – принадлежность фации определенному стратиграфическому горизонту, фации могут рассматриваться только в конкретных стратиграфических границах. Фациальный анализ имеет особенно большое значение для ископаемых фаций горных пород, образовавшихся в той или иной физико-географической обстановке в различные этапы геологической истории. Хорошо известно, что в ходе геологического времени обстановка осадконакопления неоднократно изменялась, что было связано или с колебаниями уровня Мирового океана, или с вертикальными тектоническими движениями земной коры, что, естественно, сопровождалось изменениями в горизонтальном и вертикальном направлениях состава осадков и органических остатков в них. В этих случаях особенно важно выявление и изучение фациальной изменчивости и зональности одновозрастных отложений для корреляции . геологических разрезов, определения бывших палеогеографических условий и обстановок осадконакопления и, таким образом, выяснения происхождения пород. Корреляция разрезов является основным материалом для составления фациальных профилей и обобщающих карт фаций. При изучении ископаемых фаций используется метод актуализма - как метод познания прошлого путем изучения современных процессов. Указанный принцип был сформулирован английским ученым Ч. Лайелем как "настоящее – ключ к познанию прошлого" и в ряде случаев применяется при геологических исследованиях. Однако по мере накопления новых геологических данных по различным континентам становилось ясным, что не все физико-географические или палеогеографические обстановки могут быть интерпретированы на основании сопоставления с современными процессами. При этом, чем древнее изучаемые горные породы, тем больше отклонений и меньше возможность интерпретации их только с точки зрения наших дней. Н. М. Страхов, исходя из представлений "о необратимом и направленном процессе развития Земли, значительно уточнил и углубил метод актуализма применительно к осадочным горным породам, разработав сравнительно-исторический метод, широко используемый в геологических исследованиях. Среди современных и ископаемых фаций различают три крупные группы фаций : 1) морские; 2) континентальные; 3) переходные . Каждая из этих групп может быть разделена на ряд макро- и микрофаций. Литогенез - совокупность природных процессов образования и последующих изменений осадочных горных пород . Главные факторы литогенеза – тектонические движения земной коры и климат . Стадии литогенеза - Гипергенез – стадия физического и химического выветривания. Седиментогенез – совокупность явлений, протекающих на поверхности Земли и приводящих к образованию новых осадочных образований за счёт переработки ранее существовавших пород.
Этапы седиментогенеза:
1) смыв с транспортировка материала
2) осаждение (седиментация) материала
. Диагенез – стадия преобразования осадка в осадочную горную породу. Осадок Источник энергии для процесса осадконакопления - солнечная радиация, трансформируемая на поверхности Земли и в водных бассейнах в различные биологические и геологические (физические, физико-химические, химические) процессы. Источником вещества для образования осадков служат продукты выветривания и перемыва пород суши, берегов водных бассейнов, жизнедеятельности организмов, вулканических извержений и материала, поступающего из космоса. Морские отложения, донные осадки современных и древних морей Земли. Преобладают над континентальными отложениями, слагая более 75% общего объёма осадочной оболочки материковой земной коры.

Седиментогенез – совокупность явлений, протекающих на поверхности Земли и приводящих к образованию новых осадочных образований за счёт переработки ранее существовавших пород.

Генетические типы донных осадков. Вещественный состав донных осадков и закономерности их распределения в различных зонах океана связаны с:

1) глубиной океанов и рельефом дна;

2) гидродинамической обстановкой (волнения, приливы и отливы, поверхностные и глубинные течения);

3) характером поставляемого осадочного материала;

4) биологической продуктивностью;

5) эксплозивной деятельностью вулканов.

По генезису выделяются следующие основные группы осадков:

1) терригенные (от лат. "терра" – земля);

2) органогенные (биогенные);

3) полигенные ("красная глубоководная глина");

4) вулканогенные;

5) хемогенные

39.Абразия морских берегов. Транспортировка обломочного материала.

Абразионный берег – высокий крутой отступающий берег океана, моря, озера, водохранилища, разрушаемый действием прибоя. Основными элементы рельефа абразионного берега являются:
- абразионный подводный склон (бенч);

- береговой уступ (клиф), ограничивающий береговую террасу со стороны суши;

- волноприбойная ниша ; и
- подводная примкнувшая намывная аккумулятивная терраса .

Основное значение имеют первые три формы переноса. Транспортировка обломочного материала плавающим льдом играет подчиненную роль в общем балансе перемещения речных наносов, но может оказаться причиной местных изменений гранулометрического состава аллювиальных отложений, например возникновения скоплений валунно-галечного материала среди песчаных и илистых наносов пойм. Между первыми тремя формами перемещения обломочного материала установлены все переходы, обусловленные соотношениями между скоростью потока и крупностью обломочных частиц. Перенос во взвешенном состоянии является основной формой транспортировки обломочного материала речными потоками, и этим способом переносится приблизительно половина всей массы наносов. Эта форма переноса возникает вследствие неравномерного распределения скоростей потока по вертикали, быстро возрастающих по на правлению от дна к поверхности движущегося слоя воды.

40.Понятие об океаносфере. Рельеф дня Мирового океана.

Океаносфера включает в себя воду морей и океанов. В океаносфере сосредоточено 96,5% всех вод планеты, что в абсолютном выражении равно 133,6∙10 7 км 3 , и, следовательно, только 3,5% вод приходится на материковые пространства Масса океаносферы приблизительно в 250 раз больше массы атмосферы. Площадь, занимаемая Мировым океаном , определена в 361,3∙10 6 км 2 , что составляет 70,5% всей поверхности нашей планеты; это в 2,5 раза больше территории суши.

С поверхности Мирового океана ежегодно испаряется 86% всей влаги, поступающей в атмосферу (500∙10 3 км 3 в год), тогда как остальные 14% дает суша (70∙10 3 км 3 в год). По сравнению с массой вод океаносферы объем испаряющейся влаги составляет лишь 0,037%. Мировой океан не только главный поставщик влаги в атмосферу, но и важнейший источник вод суши. Материковый сток (47∙10 3 км 3 в год) замыкает планетарный влагообмен.

В процессе испарения, и особенно при разбрызгивании воды, в результате ветрового волнения одновременно с влагой в воздух попадают соли, растворенные в океане. При этом хлориды (как показали исследования С.В. Бруевича с коллегами) в основном остаются в океане, а карбонаты и сульфаты преимущественно переходят в аэрозоли, определяя солевой состав атмосферных осадков. Таким образом, происходит перераспределение ионов. Видимо, этим и обусловлено различие химического состава атмосферной влаги, океанических и речных вод. К тому же и концентрация растворенных солей в океане значительно выше (в среднем 35 г на 1 л), чем в водах суши (обыкновенно менее 1-2 г на 1 л). Общее количество солей в Мировом океане определено в 46,5∙10 15 т. В обмен с атмосферой и сушей вовлекаются лишь 5∙10 9 т солей; около 10% из них уносится с океана на сушу, и затем приблизительно такое же количество солей возвращается с материковым стоком в океан. С содержанием солей и химическим составом океанических вод (в том числе и его постоянством) связаны многие физические и динамические особенности океаносферы. Различие же химического состава между водами океана и суши определяется и постоянно поддерживается планетарным солеобменом. Мировой океан - основная часть гидросферы , составляющая 94,2 % всей её площади, непрерывная, но не сплошная водная оболочка Земли, окружающая материки и острова и отличающаяся общностью солевого состава. Систематическое изучение дна мирового океана началось с появлением эхолота . Большая часть дна океанов представляет собой ровные поверхности, так называемые абиссальные равнины . Их средняя глубина - 5 км. В центральных частях всех океанов расположены линейные поднятия на 1-2 км - срединно-океанические хребты , которые связаны в единую сеть. Хребты разделены трансформными разломами на сегменты , проявляющиеся в рельефе низкими возвышенностями, перпендикулярными хребтам.

На абиссальных равнинах расположено множество одиночных гор, часть из которых выступает над поверхностью воды в виде островов. Большинство этих гор - потухшие или действующие вулканы . Под тяжестью горы океаническая кора прогибается, и гора медленно погружается в воду. На ней образуется коралловый риф

ПОВТОРЕНИЕ НЕОБХОДИМЫХ ЗНАНИЙ

Какие выводы можно сделать, сравнивая предметы? (Жизненный опыт)

Сравнивая предметы, можно сделать вывод об их сходстве и различии.

В каких случаях пользуются сравнением? (Жизненный опыт)

Сравнением пользуются в случае необходимости описания предмета, выбора между несколькими объектами.

Сравните число потомков, которое может дать за всю жизнь пара лягушек и пара обезьян. Значит ли это, что число лягушек постоянно растёт?

Число потомства, которое может дать пара лягушек значительно больше, чем может дать потомства пара обезьян. Это не значит, что число лягушек постоянно растет. У лягушек значительно меньше продолжительность жизни, намного выше смертность молодых особей (лягушат).

Какую урожайность этих посевов можно было предвидеть?

Посевы кукурузы в нашей стране в 60-х годах находились значительно севернее ее распространения на родине. Поэтому высоких урожаев ожидать не стоило. Урожайность растения в более прохладном климате, с меньшим вегетационным периодам конечно будет ниже.

Попробуйте объяснить, почему подводные лодки похожи на дельфина, кальмара и ската, но не похожи на медузу.

Обтекаемая форма тела дельфина, кальмара, ската, которая помогает уменьшать сопротивление и развивать высокую скорость под водой, в большей степени подходит на роль образца при создании подводных лодок.

Всякое ли сходство важно?

Не всякое сходство имеет значение.

С кем «сравнивает» эту бабочку птица? Какую ошибку она совершает?

Птица сравнивает эту бабочку с совой. Ошибка в том, что птица обращает внимание на окраску бабочки, а существенным признаком является строение ее тела.

В чём сходство между китом и подводной лодкой? Можно ли на основании этого сходства делать вывод о внутреннем строении кита?

Сходство между подводной лодкой и китом в их форме. На основании этого факта нельзя сделать вывод о внутреннем строении.

В чём сходство между скорпеной и окунем? Можно ли на основании этого сходства делать вывод о внутреннем строении скорпены?

Сходство между скорпеной и окунем только в общем плане строения. Их цвет, форма и величина плавников разные. Однако эти признаки не дают возможность сделать вывод о внутреннем строении организмов. Поскольку оба организма – представители рыб, их внутреннее строение будет сходным.

ПРИМЕНЕНИЕ ЗНАНИЙ

1. Каковы важнейшие задачи науки?

Задачи науки – прогнозирование на основе обобщения прежнего опыта, создание и совершенствование научного мировоззрения.

2. Как учёным удаётся предсказывать неизвестные свойства?

Предсказывать неизвестные свойства ученым позволяет прогнозирование.

3. В чём заключается сравнительный метод?

Суть сравнительного метода заключается в сопоставлении двух и более объектов по различным параметрам. Сравнение позволяет найти общие, устойчивые, существенные свойства объектов, отнести их к классу объектов с известными свойствами.

4. Может ли наука объяснить чудо?

Не все явления, но большинство из них наука может объяснить. Если научные знания на данном этапе развития человечества не могут дать пояснение некоторым фактам, то, как показывает история, со временем всему находится свое объяснение.

5. Попытайтесь определить цель и задачи науки биологии.

Цель – изучение живых организмов. Задачи биологии состоят в изучении всех биологических закономерностей и раскрытии сущности жизни.

6. Как сравнительный метод помогает изучать историю Земли?

Сравнение напластований разного возраста позволяют восстановить историю развития земли.

7. Назовите существенные признаки автомобилей.

Жесткий кузов, четыре колеса, движение с помощью двигателя, топливо.

8. Поработайте в паре: пусть один находит соответственные признаки автомобиля и паровоза, а другой их оспаривает.

9. Как лично вам помогла наука в жизни?

Наука нам помогает каждый день в обыденной жизни. Именно она нам дает понимание того, почему день сменяется ночью, выпадают осадки, сменяются поры года. Научные знания нам помогают определить время, понимать важность приема пищи и т.п.

10. Как вы считаете, можно ли требовать от учёного ответственности за все дальнейшие способы использования его научных открытий?

Нельзя требовать от ученого ответственности за дальнейшие способы использования его научных открытий. История Нобеля и изобретения динамита доказывает, что иногда ученый, делая открытие, даже не предполагает о возможных путях его использования.

Среди геофизических методов исследования весьма достоверные сведения даёт сейсмический («сейсмос» в переводе с греческого — колебание, зем-летрясение), или сейсморазведка . Состоит он в следующем: на поверхности Земли производится взрыв. Специальные приборы отмечают, с какой скоростью распространяются колебания, вызванные взрывом. Получив эти данные, геофизики определяют, какие породы пройдены сейсмическими волнами. Ведь скорость прохождения волн в различных породах неодинакова. В осадочных породах скорость распространения сейсмических волн около 3 км в секунду, в граните около 5 км в секунду.

Но данные геофизиков требуют проверки, а чтобы такую проверку осуществить, надо проникнуть в недра Земли , посмот-реть, исследовать те породы, из которых наша планета состоит на глубине.

В ряде стран пробурены сверхглубокие скважины, со временем это поможет заглянуть в неведомое. Штурм земных глубин уже начался, и, возможно, скоро многое станет известным о недрах планеты, на которой живём. Эти новые данные помогут полнее использовать богатства Земли, как минераль-ные, так и энергетические.

На территории СНГ заложено 11 сверхглубоких скважин среди которых наиболее известные в следующих районах: на Прикаспийской низменности, на Урале, Кольском полуострове , на Курильских островах , а также в Закавказье.

Проникнуть в глубь Земли не просто мечта любознатель-ного человека . Это необходимость, от решения которой зависят многие важные вопросы. Проникновение в недра Земли поможет решить целый ряд вопросов, а именно: движутся ли материки? Почему происходят землетрясения и извержения вулканов ? Какова тем-пература в недрах Земли? Сжимается земной шар или расши-ряется? Почему одни участки земной коры медленно опускают-ся, а другие поднимаются? Как видно, учёным предстоит раскрыть ещё много тайн, ключ к решению которых находится в недрах нашей планеты . Материал с сайта

Поиск полезных ископаемых

Известно, что ежегодно человечество потребляет для своих нужд миллионы тонн различных полезных ископаемых: нефти, железной руды, минеральных удобрений, угля. Всё это и другое минеральное сырьё дают нам земные недра. Только нефти за год добывается столько, что ею можно покрыть тонким слоем всю земную сушу. И если сто-двести лет назад многие из на-званных ископаемых добывались прямо с поверхности или из неглубоких шахт, то в наше время таких месторождений почти не осталось. Приходится рыть глубокие шахты, бурить скважи-ны. С каждым годом всё глубже и глубже вгрызается в Землю человек, чтобы обеспечить бурно развивающуюся промышлен-ность и сельское хозяйство необходимым сырьём.

Многие учёные, особенно зарубежные, уже давно начали опасаться: «А хватит ли человечеству полезных ископаемых?» Исследова-ния показали, что именно там, на значительной глубине, образуются металлические руды, алма-зы. В более глубоких земных пластах скрыты богатейшие зале-жи угля, нефти, газа.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «naruhog.ru» — Советы по чистоте. Стирка, глажка, уборка