Высота в прямоугольной трапеции равна. Как найти высоту в трапеции, если известны все стороны

В математике известно несколько видов четырехугольников: квадрат, прямоугольник, ромб, параллелограмм. Среди них и трапеция - вид выпуклого четырехугольника, у которого две стороны параллельны, а две другие нет. Параллельные противоположные стороны называются основаниями, а две другие – боковыми сторонами трапеции. Отрезок, который соединяет середины боковых сторон, называется средней линией. Существует несколько видов трапеций: равнобедренная, прямоугольная, криволинейная. Для каждого вида трапеции есть формулы для нахождения площади.

Площадь трапеции

Чтобы найти площадь трапеции, нужно знать длину ее оснований и высоту. Высота трапеции - это отрезок, перпендикулярный основаниям. Пусть верхнее основание - a, нижнее основание - b, а высота - h. Тогда вычислить площадь S можно по формуле:

S = ½ * (a+b) * h

т.е. взять полусумму оснований, умноженную на высоту.

Также удастся вычислить площадь трапеции, если известно значение высоты и средней линии. Обозначим среднюю линию - m. Тогда

Решим задачу посложнее: известны длины четырех сторон трапеции - a, b, c, d. Тогда площадь отыщется по формуле:


Если известны длины диагоналей и угол между ними, то площадь ищется так:

S = ½ * d1 * d2 * sin α

где d с индексами 1 и 2 - диагонали. В данной формуле в расчете приводится синус угла.

При известных длинах оснований a и b и двух углах при нижнем основании площадь вычисляется так:

S = ½ * (b2 - a2) * (sin α * sin β / sin(α + β))

Площадь равнобедренной трапеции

Равнобедренная трапеция - это частный случай трапеции. Ее отличие в том, что такая трапеция - это выпуклый четырехугольник с осью симметрии, проходящей через середины двух противоположных сторон. Ее боковые стороны равны.


Найти площадь равнобедренной трапеции можно несколькими способами.

  • Через длины трех сторон. В этом случае длины боковых сторон будут совпадать, поэтому обозначены одной величиной - с, а и b - длины оснований:

  • Если известна длина верхнего основания, боковой стороны и величина угла при нижнем основании, то площадь вычисляется так:

S = c * sin α * (a + c * cos α)

где а - верхнее основание, с - боковая сторона.

  • Если вместо верхнего основания известна длина нижнего – b, площадь рассчитывается по формуле:

S = c * sin α * (b – c * cos α)

  • Если когда известны два основания и угол при нижнем основании, площадь вычисляется через тангенс угла:

S = ½ * (b2 – a2) * tg α

  • Также площадь рассчитывается через диагонали и угол между ними. В этом случае диагонали по длине равны, поэтому каждую обозначаем буквой d без индексов:

S = ½ * d2 * sin α

  • Вычислим площадь трапеции, зная длину боковой стороны, средней линии и величину угла при нижнем основании.

Пусть боковая сторона - с, средняя линия - m, угол - a, тогда:

S = m * c * sin α

Иногда в равностороннюю трапецию можно вписать окружность, радиус которой будет - r.


Известно, что в любую трапецию можно вписать окружность, если сумма длин оснований равна сумме длин ее боковых сторон. Тогда площадь найдется через радиус вписанной окружности и угол при нижнем основании:

S = 4r2 / sin α

Такой же расчет производится и через диаметр D вписанной окружности (кстати, он совпадает с высотой трапеции):

Зная основания и угол, площадь равнобедренной трапеции вычисляется так:

S = a * b / sin α

(эта и последующие формулы верны только для трапеций с вписанной окружностью).


Через основания и радиус окружности площадь ищется так:

Если известны только основания, то площадь считается по формуле:


Через основания и боковую линию площадь трапеции с вписанным кругом и через основания и среднюю линию - m вычисляется так:

Площадь прямоугольной трапеции

Прямоугольной называется трапеция, у которой одна из боковых сторон перпендикулярна основаниям. В этом случае боковая сторона по длине совпадает с высотой трапеции.

Прямоугольная трапеция представляет из себя квадрат и треугольник. Найдя площадь каждой из фигур, сложите полученные результаты и получите общую площадь фигуры.


Также для вычисления площади прямоугольной трапеции подходят общие формулы для расчета площади трапеции.

  • Если известны длины оснований и высота (или перпендикулярная боковая сторона), то площадь рассчитывается по формуле:

S = (a + b) * h / 2

В качестве h (высоты) может выступать боковая сторона с. Тогда формула выглядит так:

S = (a + b) * c / 2

  • Другой способ рассчитать площадь - перемножить длину средней линии на высоту:

или на длину боковой перпендикулярной стороны:

  • Следующий способ вычисления - через половину произведения диагоналей и синус угла между ними:

S = ½ * d1 * d2 * sin α


Если диагонали перпендикулярны, то формула упрощается до:

S = ½ * d1 * d2

  • Еще один способ вычисления - через полупериметр (сумма длин двух противоположных сторон) и радиус вписанной окружности.

Эта формула действительна для оснований. Если брать длины боковых сторон, то одна из них будет равна удвоенному радиусу. Формула будет выглядеть так:

S = (2r + c) * r

  • Если в трапецию вписана окружность, то площадь вычисляется так же:

где m - длина средней линии.

Площадь криволинейной трапеции

Криволинейная трапеция представляет из себя плоскую фигуру, ограниченную графиком неотрицательной непрерывной функции y = f(x), определенной на отрезке , осью абсцисс и прямыми x = a, x = b. По сути, две ее стороны параллельны друг другу (основания), третья сторона перпендикулярна основаниям, а четвертая представляет из себя кривую, соответствующую графику функции.


Площадь криволинейной трапеции ищут через интеграл по формуле Ньютона-Лейбница:


Так вычисляются площади различных видов трапеций. Но, помимо свойств сторон, трапеции обладают одинаковыми свойствами углов. Как у всех существующих четырехугольников, сумма внутренних углов трапеции равна 360 градусов. А сумма углов, прилежащих к боковой стороне, - 180 градусам.

Многоликая трапеция... Она может быть произвольной, равнобедренной или прямоугольной. И в каждом случае нужно знать, как найти площадь трапеции. Конечно, проще всего запомнить основные формулы. Но иногда проще воспользоваться той, которая выведена с учетом всех особенностей конкретной геометрической фигуры.

Несколько слов о трапеции и ее элементах

Любой четырехугольник, у которого две стороны параллельны, можно назвать трапецией. В общем случае они не равны и называются основаниями. Большее из них — нижнее, а другое — верхнее.

Две другие стороны оказываются боковыми. У произвольной трапеции они имеют различную длину. Если же они равны, то фигура становится равнобедренной.

Если вдруг угол между любой боковой стороной и основанием окажется равным 90 градусам, то трапеция является прямоугольной.

Все эти особенности могут помочь в решении задачи о том, как найти площадь трапеции.

Среди элементов фигуры, которые могут оказаться незаменимыми в решении задач, можно выделить такие:

  • высота, то есть отрезок, перпендикулярный обоим основаниям;
  • средняя линия, которая имеет своими концами середины боковых сторон.

По какой формуле вычислить площадь, если известны основания и высота?

Это выражение дается основным, потому что чаще всего можно узнать эти величины, даже когда они не даны явно. Итак, чтобы понять, как найти площадь трапеции, потребуется сложить оба основания и разделить их на два. Получившееся значение потом еще умножить на значение высоты.

Если обозначить основания буквами а 1 и а 2 , высоту — н, то формула для площади будет выглядеть так:

S = ((а 1 + а 2)/2)*н.

Формула, по которой вычисляется площадь, если даны ее высота и средняя линия

Если посмотреть внимательно на предыдущую формулу, то легко заметить, что в ней явно присутствует значение средней линии. А именно, сумма оснований, деленная на два. Пусть средняя линия будет обозначена буквой l, тогда формула для площади станет такой:

S = l * н.

Возможность найти площадь по диагоналям

Этот способ поможет, если известен угол, образованный ими. Предположим, что диагонали обозначены буквами д 1 и д 2 , а углы между ними — α и β. Тогда формула того, как найти площадь трапеции, будет записана следующим образом:

S = ((д 1 * д 2)/2) * sin α.

В этом выражении можно легко заменить α на β. Результат не изменится.

Как узнать площадь, если известны все стороны фигуры?

Бывают и такие ситуации, когда в этой фигуре известны именно стороны. Эта формула получается громоздкой и ее сложно запомнить. Но возможно. Пусть боковые стороны имеют обозначение: в 1 и в 2 , основание а 1 больше, чем а 2 . Тогда формула площади примет такой вид:

S = ((а 1 + а 2) / 2) * √ {в 1 2 - [(а 1 - а 2) 2 + в 1 2 - в 2 2) / (2 * (а 1 - а 2))] 2 }.

Способы вычисления площади равнобедренной трапеции

Первый связан с тем, что в нее можно вписать окружность. И, зная ее радиус (он обозначается буквой r), а также угол при основании — γ, можно воспользоваться такой формулой:

S = (4 * r 2) / sin γ.

Последняя общая формула, которая основана на знании всех сторон фигуры, существенно упростится за счет того, что боковые стороны имеют одинаковое значение:

S = ((а 1 + а 2) / 2) * √ {в 2 - [(а 1 - а 2) 2 / (2 * (а 1 - а 2))] 2 }.

Методы вычисления площади прямоугольной трапеции

Понятно, что подойдет любой из перечисленных для произвольной фигуры. Но иногда полезно знать об одной особенности такой трапеции. Она заключается в том, что разность квадратов длин диагоналей равна разности, составленной из квадратов оснований.

Часто формулы для трапеции забываются, в то время как выражения для площадей прямоугольника и треугольника помнятся. Тогда можно применить простой способ. Разделить трапецию на две фигуры, если она прямоугольная, или три. Одна точно будет прямоугольником, а вторая, или две оставшиеся, треугольниками. После вычисления площадей этих фигур останется их только сложить.

Это достаточно простой способ того, как найти площадь прямоугольной трапеции.

Как быть, если известны координаты вершин трапеции?

В этом случае потребуется воспользоваться выражением, которое позволяет определить расстояние между точками. Его можно применить три раза: для того, чтобы узнать оба основания и одну высоту. А потом просто применить первую формулу, которая описана немного выше.

Для иллюстрации такого метода можно привести такой пример. Даны вершины с координатами А(5; 7), В(8; 7), С(10; 1), Д(1; 1). Нужно узнать площадь фигуры.

До того как найти площадь трапеции, по координатам нужно вычислить длины оснований. Потребуется такая формула:

длина отрезка = √{(разность первых координат точек) 2 + (разность вторых координат точек) 2 }.

Верхнее основание обозначено АВ, значит, его длина будет равна √{(8-5) 2 + (7-7) 2 } = √9 = 3. Нижнее — СД = √ {(10-1) 2 + (1-1) 2 } = √81 = 9.

Теперь нужно провести высоту из вершины на основание. Пусть ее начало будет в точке А. Конец отрезка окажется на нижнем основании в точке с координатами (5; 1), пусть это будет точка Н. Длина отрезка АН получится равной √{(5-5) 2 + (7-1) 2 } = √36 = 6.

Осталось только подставить получавшиеся значения в формулу площади трапеции:

S = ((3 + 9) / 2) * 6 = 36.

Задача решена без единиц измерения, потому что не указан масштаб координатной сетки. Он может быть как миллиметр, так и метр.

Примеры задач

№ 1. Условие. Известен угол между диагоналями произвольной трапеции, он равен 30 градусам. Меньшая диагональ имеет значение 3 дм, а вторая больше ее в 2 раза. Необходимо посчитать площадь трапеции.

Решение. Для начала нужно узнать длину второй диагонали, потому что без этого не удастся сосчитать ответ. Вычислить ее несложно, 3 * 2 = 6 (дм).

Теперь нужно воспользоваться подходящей формулой для площади:

S = ((3 * 6) / 2) * sin 30º = 18/2 * ½ = 4,5 (дм 2). Задача решена.

Ответ: площадь трапеции равна 4,5 дм 2 .

№ 2. Условие. В трапеции АВСД основаниями являются отрезки АД и ВС. Точка Е - середина стороны СД. Из нее проведен перпендикуляр к прямой АВ, конец этого отрезка обозначен буквой Н. Известно, что длины АВ и ЕН равны соответственно 5 и 4 см. Нужно вычислить площадь трапеции.

Решение. Для начала нужно сделать чертеж. Поскольку значение перпендикуляра меньше стороны, к которой он проведен, то трапеция будет немного вытянутой вверх. Так ЕН окажется внутри фигуры.

Чтобы отчетливо увидеть ход решения задачи, потребуется выполнить дополнительное построение. А именно, провести прямую, которая будет параллельна стороне АВ. Точки пересечения этой прямой с АД — Р, а с продолжением ВС — Х. Получившаяся фигура ВХРА — параллелограмм. Причем его площадь равна искомой. Это связано с тем, что треугольники, которые получились при дополнительном построении, равны. Это следует из равенства стороны и двух прилежащих к ней углов, один — вертикальный, другой - накрест лежащий.

Найти площадь параллелограмма можно по формуле, которая содержит произведение стороны и высоты, опущенной на нее.

Таким образом, площадь трапеции равна 5 * 4 = 20 см 2 .

Ответ: S = 20 см 2 .

№ 3. Условие. Элементы равнобедренной трапеции имеют такие значения: нижнее основание - 14 см, верхнее — 4 см, острый угол — 45º. Нужно вычислить ее площадь.

Решение. Пусть меньшее основание имеет обозначение ВС. Высота, проведенная из точки В, будет называться ВН. Поскольку угол 45º, то треугольник АВН получится прямоугольный и равнобедренный. Значит, АН=ВН. Причем АН очень легко найти. Она равна половине разности оснований. То есть (14 - 4) / 2 = 10 / 2 = 5 (см).

Основания известны, высота сосчитана. Можно пользоваться первой формулой, которая здесь была рассмотрена для произвольной трапеции.

S = ((14 + 4) / 2) * 5 = 18/2 * 5 = 9 * 5 = 45 (см 2).

Ответ: Искомая площадь равна 45 см 2 .

№ 4. Условие. Имеется произвольная трапеция АВСД. На ее боковых сторонах взяты точки О и Е, так что ОЕ параллельна основанию АД. Площадь трапеции АОЕД в пять раз больше, чем у ОВСЕ. Вычислить значение ОЕ, если известны длины оснований.

Решение. Потребуется провести две параллельные АВ прямые: первую через точку С, ее пересечение с ОЕ — точка Т; вторую через Е и точкой пересечения с АД будет М.

Пусть неизвестная ОЕ=х. Высота меньшей трапеции ОВСЕ — н 1 , большей АОЕД — н 2 .

Поскольку площади этих двух трапеций соотносятся как 1 к 5, то можно записать такое равенство:

(х + а 2) * н 1 = 1/5 (х + а 1) * н 2

н 1 /н 2 = (х + а 1) / (5(х + а 2)).

Высоты и стороны треугольников пропорциональны по построению. Поэтому можно записать еще одно равенство:

н 1 /н 2 = (х - а 2) / (а 1 - х).

В двух последних записях в левой части стоят равные величины, значит, можно написать, что (х + а 1) / (5(х + а 2)) равно (х - а 2) / (а 1 - х).

Здесь требуется провести ряд преобразований. Сначала перемножить крест накрест. Появятся скобки, которые укажут на разность квадратов, после применения этой формулы получится короткое уравнение.

В нем нужно раскрыть скобки и перенести все слагаемые с неизвестной «х» в левую сторону, а потом извлечь квадратный корень.

Ответ : х = √ {(а 1 2 + 5 а 2 2) / 6}.

(S) трапеции, начните вычисление высоты (h) с нахождения полусуммы длин параллельных сторон: (a+b)/2. Затем на полученное значение разделите площадь - результат и будет искомой величиной: h = S/((a+b)/2) = 2*S/(a+b).

Зная длину средней линии (m) и площадь (S) можно упростить формулу из предыдущего шага. По определению средняя линия трапеции равна полусумме ее оснований, поэтому для вычисления высоты (h) фигуры просто разделите площадь на длину средней линии: h = S/m.

Можно определить высоту (h) такого и в том случае, если даны только длина одной из боковых сторон (с) и угол (α), образуемый ей и длинным основанием. В этом случае следует рассмотреть , образуемый этой стороной, высотой и коротким отрезком основания, который отсекает опущенная на него высота. Этот треугольник будет прямоугольным, известная сторона будет в нем гипотенузой, а высота - катетом. Отношение длин и гипотенузы равно противолежащего катету угла, поэтому для вычисления высоты трапеции умножьте известную длину стороны на синус известного угла: h = с*sin(α).

Такой же треугольник стоит рассмотреть и если даны длина боковой стороны (с) и величина угла (β) между ней и другим (коротким) основанием. В этом случае величина угла между боковой стороной (гипотенузой) и высотой (катетом) будет на 90° меньше известного из условий угла: β-90°. Так как отношение длин катета и гипотенузы равно косинусу угла между ними, то высоту трапеции вычислите умножением косинуса уменьшенного на 90° угла на длину боковой стороны: h = с*cos(β-90°).

Если вписана окружность известного радиуса (r), вычисления высоты (h) будет очень проста и не потребует никаких других параметров. Такая окружность по определению должна каждого из оснований только одной точкой и эти точки будут лежать на одной линии с центром . Это значит, что расстояние между ними будет равно диаметру (удвоенному радиусу), проведенному перпендикулярно основаниям, то есть совпадающим с высотой трапеции: h=2*r.

Трапецией считается такой четырехугольник, у которого две стороны параллельны, а две другие нет. Высотой трапеции называется отрезок, проведенный перпендикулярно между двумя параллельными прямыми. В зависимости от исходных данных ее можно вычислить по-разному.

Вам понадобится

  • Знание сторон, оснований, средней линии трапеции, а так же, опционально, ее площадь и/или периметр.

Инструкция

Допустим, имеется трапеция с теми же данными, что и на рисунке 1. Проведем 2 высоты, получим , у которого 2 меньшие стороны катетами прямоугольных треугольников. Обозначим меньший катит за x. Он находится

На простой вопрос «Как найти высоту трапеции?» существует несколько ответов, и все потому, что могут быть даны разные исходные величины. Поэтому и формулы будут различаться.

Эти формулы можно запомнить, но они несложно выводятся. Нужно только применять ранее изученные теоремы.

Принятые в формулах обозначения

Во всех приведенных ниже математических записях верны такие прочтения букв.

В исходных данных: все стороны

Для того чтобы найти высоту трапеции в общем случае потребуется воспользоваться такой формулой:

н = √(с 2 - (((а - в) 2 + с 2 - d 2)/(2(а - в))) 2). Номер 1.

Не самая короткая, но и встречается в задачах достаточно редко. Обычно можно воспользоваться другими данными.

Формула, которая подскажет, как найти высоту равнобедренной трапеции в той же ситуации, гораздо короче:

н = √(с 2 - (а - в) 2 /4). Номер 2.

В задаче даны: боковые стороны и углы при нижнем основании

Принимают, что угол α прилежит к боковой стороне с обозначением «с», соответственно угол β к стороне d. Тогда формула для того, как найти высоту трапеции, в общем виде будет такой:

н = с * sin α= d * sin β. Номер 3.

Если фигура равнобедренная, то можно воспользоваться таким вариантом:

н = с * sin α= ((а - в) / 2) * tg α. Номер 4.

Известны: диагонали и углы между ними

Обычно к этим данным присоединяются еще известные величины. Например, основания или средняя линия. Если даны основания, то для ответа на вопрос, как найти высоту трапеции, пригодится такая формула:

н = (d 1 * d 2 * sin γ) / (а + в) или н = (d 1 * d 2 * sin δ) / (а + в). Номер 5.

Это для общего вида фигуры. Если дана равнобедренная, то запись преобразится так:

н = (d 1 2 * sin γ) / (а + в) или н = (d 1 2 * sin δ) / (а + в). Номер 6.

Когда в задаче идет речь о средней линии трапеции, то формулы для поиска ее высоты становятся такими:

н = (d 1 * d 2 * sin γ) / 2m или н = (d 1 * d 2 * sin δ) / 2m. Номер 5а.

н = (d 1 2 * sin γ) / 2m или н = (d 1 2 * sin δ) / 2m. Номер 6а.

Среди известных величин: площадь с основаниями или средней линией

Это, пожалуй, самые короткие и простые формулы того, как найти высоту трапеции. Для произвольной фигуры она будет такой:

н = 2S / (а + в). Номер 7.

Она же, но с известной средней линией:

н = S / m. Номер 7а.

Как ни странно, но для равнобедренной трапеции формулы будут выглядеть так же.

Задачи

№1. На определение углов при нижнем основании трапеции.

Условие. Дана равнобедренная трапеция, боковая сторона которой 5 см. Ее основания равны 6 и 12 см. Требуется найти синус острого угла.

Решение. Для удобства следует ввести обозначение. Пусть левая нижняя вершина будет А, все остальные по часовой стрелке: В, С, Д. Таким образом, нижнее основание будет обозначено АД, верхнее — ВС.

Нужно провести высоты из вершин В и С. Точки, которые укажут концы высот будут обозначены Н 1 и Н 2 , соответственно. Поскольку в фигуре ВСН 1 Н 2 все углы прямые, то она является прямоугольником. Это означает, что отрезок Н 1 Н 2 равен 6 см.

Теперь нужно рассмотреть два треугольника. Они равны, так как являются прямоугольными с одинаковыми гипотенузами и вертикальными катетами. Отсюда следует, что и меньшие катеты у них равны. Поэтому их можно определить как частное от разности. Последняя получится от вычитания из нижнего основания верхнего. Делиться оно будет на 2. То есть 12 - 6 нужно поделить на 2. АН 1 = Н 2 Д = 3 (см).

Теперь из теоремы Пифагора нужно найти высоту трапеции. Она необходима для нахождения синуса угла. ВН 1 = √(5 2 - 3 2) = 4 (см).

Воспользовавшись знанием о том, как находится синус острого угла в треугольнике с прямым углом, можно записать такое выражение: sin α= ВН 1 / АВ = 0,8.

Ответ. Искомый синус равен 0,8.

№2. На нахождение высоты трапеции по известному тангенсу.

Условие. У равнобедренной трапеции нужно вычислить высоту. Известно, что ее основания равны 15 и 28 см. Дан тангенс острого угла: 11/13.

Решение. Обозначение вершин такое же, как в предыдущей задаче. Снова нужно провести две высоты из верхних углов. По аналогии с решением первой задачи нужно найти АН 1 = Н 2 Д, которые определятся как разность 28 и 15, деленная на два. После подсчетов получается: 6,5 см.

Поскольку тангенс — это отношение двух катетов, то можно записать такое равенство: tg α= АН 1 / ВН 1 . Причем это отношение равно 11/13 (по условию). Так как АН 1 известен, то можно вычислить высоту: ВН 1 = (11 * 6,5) / 13. Простые расчеты дают результат в 5,5 см.

Ответ. Искомая высота равна 5,5 см.

№3. На вычисление высоты по известным диагоналям.

Условие. О трапеции известно, что ее диагонали равны 13 и 3 см. Нужно узнать ее высоту, если сумма оснований составляет 14 см.

Решение. Пусть обозначение фигуры будет таким же, как раньше. Предположим, что АС — меньшая диагональ. Из вершины С нужно провести искомую высоту и обозначить ее СН.

Теперь потребуется выполнить дополнительное построение. Из угла С нужно провести прямую, параллельную большей диагонали и найти точку ее пересечения с продолжением стороны АД. Это будет Д 1 . Получилась новая трапеция, внутри которой начерчен треугольник АСД 1 . Он-то и нужен для дальнейшего решения задачи.

Искомая высота окажется еще и ей же в треугольнике. Поэтому можно воспользоваться формулами, изученными в другой теме. Высота треугольника определяется как произведение числа 2 и площади, деленное на сторону, к которой она проведена. А сторона оказывается равна сумме оснований исходной трапеции. Это исходит из правила, по которому выполнено дополнительное построение.

В рассматриваемом треугольнике все стороны известны. Для удобства введем обозначения х = 3 см, у = 13 см, z = 14 см.

Теперь можно сосчитать площадь, воспользовавшись теоремой Герона. Полупериметр будет равен р = (х + у + z)/ 2 = (3 + 13 + 14) / 2 = 15 (см). Тогда формула для площади после подстановки значений будет выглядеть так: S = √(15 * (15 - 3) * (15 - 13) * (15 - 14)) = 6 √10 (см 2).

Ответ. Высота равна 6√10 / 7 см.

№4. Для поиска высоты по сторонам.

Условие. Дана трапеция, три стороны которой равны 10 см, а четвертая 24 см. Нужно узнать ее высоту.

Решение. Поскольку фигура равнобедренная, то потребуется формула под номером 2. В нее нужно просто подставить все значения и сосчитать. Это будет выглядеть так:

н = √(10 2 - (10 - 24) 2 /4) = √51 (см).

Ответ. н = √51 см.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «naruhog.ru» — Советы по чистоте. Стирка, глажка, уборка