Газовые гидраты: миф или светлое будущее энергетической отрасли? Состав и свойства газовых гидратов.

Годы они же обнаруживают первые месторождения газовых гидратов на севере СССР. Одновременно с этим возможность образования и существования гидратов в природных условиях находит лабораторное подтверждение (Макогон).

С этого момента газовые гидраты начинают рассматриваться как потенциальный источник топлива. По различным оценкам, запасы углеводородов в гидратах составляют от 1.8·10 14 до 7.6·10 18 м³ . Выясняется их широкое распространение в океанах и криолитозоне материков, нестабильность при повышении температуры и понижении давления.

Свойства гидратов

Природные газовые гидраты представляют собой метастабильный минерал, образование и разложение которого зависит от температуры, давления, химического состава газа и воды, свойств пористой среды и др.

Газовые гидраты в природе

Большинство природных газов (CH 4 , C 2 H 6 , C 3 H 8 , CO 2 , N 2 , H 2 S , изобутан и т. п.) образуют гидраты, которые существуют при определённых термобарических условиях. Область их существования приурочена к морским донным осадкам и к областям многолетнемёрзлых пород. Преобладающими природными газовыми гидратами являются гидраты метана и диоксида углерода.

При добыче газа гидраты могут образовываться в стволах скважин, промышленных коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт , гликоли , 30%-ный раствор CaCl 2), а также поддерживают температуру потока газа выше температуры гидратообразования с помощью подогревателей, теплоизоляцией трубопроводов и подбором режима эксплуатации, обеспечивающего максимальную температуру газового потока. Для предупреждения гидратообразования в магистральных газопроводах наиболее эффективна газоосушка - очистка газа от паров воды.

Научные исследования

В последние годы интерес к проблеме газовых гидратов во всем мире значительно усилился. Рост активности исследований объясняется следующими основными факторами:

  • активизацией поисков альтернативных источников углеводородного сырья в странах, не обладающих ресурсами энергоносителей, так как газовые гидраты являются нетрадиционным источником углеводородного сырья, опытно-промышленное освоение, которого может начаться в ближайшие годы;
  • необходимостью оценки роли газовых гидратов в приповерхностных слоях геосферы, особенно в связи с их возможным влиянием на глобальные климатические изменения;
  • изучением закономерностей образования и разложения газовых гидратов в земной коре в общетеоретическом плане с целью обоснования поисков и разведки традиционных месторождений углеводородов (природные гидратопроявления могут служить маркерами более глубокозалегающих обычных месторождений нефти и газа);
  • активным освоением месторождений углеводородов, расположенных в сложных природных условиях (глубоководный шельф, полярные регионы), где проблема техногенных газогидратов обостряется;
  • целесообразностью сокращения эксплуатационных затрат на предупреждение гидратообразования в промысловых системах добычи газа за счёт перехода на энерго-ресурсосберегающие и экологически чистые технологии;
  • возможностью использования газогидратных технологий при разработке, хранении и транспорте природного газа.

В последние годы (после проведения в 2003 году совещания в ОАО «Газпром») исследования гидратов в России продолжались в различных организациях как посредством госбюджетного финансирования (два интеграционных проекта Сибирского отделения РАН , небольшие гранты РФФИ , грант губернатора Тюмени, грант министерства высшего образования РФ), так и за счёт грантов международных фондов - ИНТАС, СРДФ, ЮНЕСКО (по программе «плавучий университет» - морские экспедиции под эгидой ЮНЕСКО под лозунгом Training Through Research - обучение через исследования), КОМЕКС (Kurele-Okhosk-Marine Experiment), ЧАОС (Carbon-Hydrate Accumulations in the Okhotsk Sea) и др.

В 2002-2004 гг. исследования по нетрадиционным источникам углеводородов, включая газовые гидраты (с учетом коммерческих интересов ОАО «Газпром»), продолжались в ООО «Газпром ВНИИГАЗ» и ОАО «Промгаз» при небольшом масштабе финансирования. В настоящее время исследования по газовым гидратам проводятся в ОАО «Газпром» (главным образом, в ООО «Газпром ВНИИГАЗ»), в институтах Российской академии наук, в университетах.

Исследования геологических и технологических проблем газовых гидратов были начаты в середине 60-х годов специалистами ВНИИГАЗа. Вначале ставились и решались технологические вопросы предупреждения гидратообразования, затем тематика постепенно расширялась: включались в сферу интересов кинетические аспекты гидратообразования, далее значительное внимание было уделено геологическим аспектам, в частности возможностям существования газогидратных залежей, теоретическим проблемам их освоения.

Геологические исследования газовых гидратов

Следующий этап исследований термодинамики гидратообразования связан с освоением гигантских северных месторождений - Уренгойского и Ямбургского. Для совершенствования методов предупреждения гидратообразования применительно к системам сбора и промысловой обработки конденсатсодержащих газов понадобились экспериментальные данные по условиям гидратообразования в высококонцентрированных растворах метанола в широком диапазоне температур и давлений. В ходе экспериментальных исследований (В. А. Истомин, Д. Ю. Ступин и др.) выяснились серьёзные методические трудности получения представительных данных при температурах ниже минус 20 °C. В связи с этим была разработана новая методика исследований фазовых равновесий газовых гидратов из многокомпонентных газовых смесей с регистрацией тепловых потоков в гидратной камере и при этом обнаружена возможность существования метастабильных форм газовых гидратов (на стадии их образования), что подтвердилось последующими исследованиями зарубежных авторов. Анализ и обобщение новых экспериментальных и промысловых данных (как отечественных, так и зарубежных) дал возможность разработать (В. А. Истомин, В. Г. Квон, А. Г. Бурмистров, В. П. Лакеев) инструкцию по оптимальному расходу ингибиторов гидратообразования (1987 г.).

Перспективы применения в промышленности газогидратных технологий

Технологические предложения по хранению и транспорту природного газа в гидратном состоянии появились ещё в 40-х годах 20-ого века. Свойство газовых гидратов при относительно небольших давлениях концентрировать значительные объёмы газа привлекает внимание специалистов длительное время. Предварительные экономические расчеты показали, что наиболее эффективным оказывается морской транспорт газа в гидратном состоянии, причем дополнительный экономический эффект может быть достигнут при одновременной реализации потребителям транспортируемого газа и чистой воды, остающейся после разложения гидрата (при образовании газогидратов вода очищается от примесей). В настоящее время рассматриваются концепции морского транспорта природного газа в гидратном состоянии при равновесных условиях, особенно при планировании разработки глубоководных газовых (в том числе и гидратных) месторождений, удаленных от потребителя.

Однако в последние годы все большее внимание уделяется транспорту гидратов в неравновесных условиях (при атмосферном давлении). Ещё одним аспектом применения газогидратных технологий является возможность организации газогидратных хранилищ газа в равновесных условиях (под давлением) вблизи крупных потребителей газа. Это связано со способностью гидратов концентрировать газ при относительно низком давлении. Так, например, при температуре +4°С и давлении 40 атм., концентрация метана в гидрате соответствует давлению в 15 - 16 МПа (150-160 атм.).

Соединения, образующиеся при определённых термобарических условиях из воды и . Имя клатраты, от латинского «clathratus», что значит «сажать в клетку», было дано Пауэллом в . Гидраты газа относятся к нестехиометрическим, то есть к соединениям переменного состава. Впервые гидраты газов (сернистого газа и хлора) наблюдали ещё в конце Дж. Пристли, Б. Пелетье и В. Карстен.

Впервые газовые гидраты были описаны Гемфри Дэви в 1810 году. К 1888 году Вилард получает гидраты , C 2 H 2 , и N 2 O.

В 40-е годы советские учёные высказывают гипотезу о наличии залежей газовых гидратов в зоне . В 60-е годы они же обнаруживают первые меторождения газовых гидратов на севере СССР. С этого момента газовые гидраты начинают рассматриваться как потенциальные источник топлива. Постепенно выясняется их широкое распространение в океанах и нестабильность при повышении температуры. Поэтому сейчас природные газовые гидраты приковывают особое внимание как возможный источник ископаемого топлива, а также участник изменений климата.

Свойства гидратов

Газовые гидраты внещне напоминают спресованный снег. Они часто имеют характерный запах природного газа, и могут гореть. Благодаря своей клатратной структуре единичный объём газового гидрата может содержать до 160-180 см³ чистого газа. Они легко распадаются на воду и газ при повышении температуры.

Строение гидратов

В структуре газогидратов молекулы образуют ажурный каркас (то есть решётку хозяина), в котором имеются полости. Эти полости могут занимать газа («молекулы-гости»). Молекулы газа связаны с каркасом воды ван-дер-ваальсовскими связями. В общем виде состав газовых гидратов описывается формулой M·n·H 2 O, где М - молекула газа-гидратообразователя, n - число молекул воды, приходящихся на одну включённую молекулу газа, причём n - переменное число, зависящее от типа гидратообразователя, давления и температуры. В настоящее время известно по крайней мере три кристаллические модификации газогидратов:

Газовые гидраты в природе

Большинство ( , и т. п.) образуют гидраты, которые существуют при определённых термобарических условиях. Область их существования приурочена к морским донным осадкам и к областям пород. Преобладающими природными газовыми гидратами являются и диоксида углерода.

При добыче газа гидраты могут образовываться в стволах скважин, промысловых коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ( , гликоли, 30%-ный раствор CaCl 2), а также поддерживают температуру потока газа выше температуры гидратообразования с помощью подогревателей, теплоизоляцией трубопроводов и подбором режима эксплуатации, обеспечивающего максимальную температуру газового потока. Для предупреждения гидратообразования в магистральных газопроводах наиболее эффективна газоосушка - очистка газа от паров воды.

Газогидраты - относительно новый и потенциально обширный источник природного газа. Они представляют собой молекулярные соединения воды и метана, существующие при низких температурах и высоком давлении. За внешнее сходство газогидраты стали называть «горящим льдом». В природе газогидраты встречаются либо в зонах вечной мерзлоты, либо на глубоководье, что изначально создает трудные условия для их разработки.

В 2013 году Япония первой в мире провела успешную экспериментальную добычу метана из газогидратов на море. Это достижение заставляет пристальнее приглядеться к перспективам разработки газогидратов.Можно ли после «неожиданного» наступления сланцевой революции ожидать газогидратную революцию?

Предварительные оценки запасов газогидратов в мире свидетельствуют о том, что они на порядок превышают запасы конвенционального природного газа.Но, во-первых, они носят весьма приблизительный характер; во-вторых, лишь небольшая часть из них может быть добыта при текущем уровне развития технологий. И даже эта часть потребует огромных издержек и может быть связана с непредвиденными экологическими рисками. Тем не менее ряд стран, таких как США, Канада и страны азиатского региона, которые отличаются высокими ценами на природный газ и растущим спросом на него, проявляют большую заинтересованность в развитии разработки газогидратов и продолжают активно исследовать данное направление.

Эксперты отмечают высокую неопределенность в отношении будущего газогидратов и считают, что их промышленная разработка начнется не ранее чем через 10-20 лет, но упускать из виду этот ресурс нельзя.

Что такое газогидраты?

Газовые гидраты (клатраты) представляют собой твердые кристаллические соединения низкомолекулярных газов, таких как метан, этан, пропан, бутан и др., с водой. Внешне они напоминают снег или рыхлый лед. Они устойчивы при низких температурах и повышенном давлении; при нарушении указанных условий газогидраты легко распадаются на воду и газ. Самым распространенным природным газом-гидратообразователем является метан.

Техногенные и природные газогидраты

Различают техногенные и природные газовые гидраты. Техногенные гидраты могут образовываться в системах добычи конвенционального природного газа (в призабойной зоне, в стволах скважин и т.д.) и при его транспортировке. В технологических процессах добычи и транспортировки конвенционального природного газа образование газогидратов рассматривается как нежелательное явление, что предполагает дальнейшее совершенствование методов их предупреждения и ликвидации. В то же время техногенные газогидраты могут быть использованы для хранения больших
объемов газа, в технологиях очистки и разделения газов, для опреснения морской воды и в аккумулировании энергии для целей охлаждения и кондиционирования.

Природные гидраты могут формировать скопления или находиться в рассеянном состоянии. Они встречаются в местах, сочетающих низкие температуры и высокое давление, таких как глубоководье (придонные области глубоких озер, морей и океанов) и зона вечной мерзлоты (арктический регион). Глубина залегания газогидратов на морском дне составляет 500-1 500 м, а в арктической зоне - 200-1 000 м.

Особое значение с точки зрения перспектив разработки месторождений газогидратов имеет наличие нижнего пласта свободного природного газа или свободной воды:

Свободный газ. В этом случае разработка газогидратных месторождений происходит способом, схожим с добычей конвенционального газа. Добыча свободного газа из нижнего пласта вызывает снижение давления в гидратонасыщенном пласте и разрушает границу между ними. Газ, полученный из газогидратов, дополняет газ, полученный из нижнего пласта. Это наиболее перспективное направление разработки месторождений газогидратов. Свободная вода. Когда под газогидратным месторождением находится вода, снижение давления в зоне гидратов может быть достигнуто за счет ее извлечения. Этот способ технически реализуем, но менее экономически привлекателен по сравнению с первым. Отсутствие нижнего слоя. Перспективы разработки газогидратных месторождений, снизу и сверху окруженных непроницаемыми осадочными породами, остаются туманными

Оценки ресурсов природных газогидратов в мире.

Оценки мировых ресурсов газогидратов с самого начала, а именно с 1970-х годов, носили противоречивый и отчасти спекулятивный характер. В 1970-1980-х годах они находились на уровне 100-1 000 квадрлн. куб. м, в 1990-х годах - снизились до 10 квадрлн. куб. м, а в 2000-е годы - до 100-1 000 трлн. куб. м.

Международное энергетическое агентство (МЭА) в 2009 году привело оценку в 1 000-5 000 трлн. куб. м, хотя значительный разброс сохраняется. Например, ряд текущих оценок указывают на наличие ресурсов газогидратов в 2 500-20 000 трлн. куб. м. Тем не менее даже с учетом значительного снижения оценок ресурсы газогидратов остаются на порядок выше ресурсов конвенционального природного газа, оцененных на уровне 250 трлн. куб. м (МЭА оценивает запасы конвенционального природного газа в 468 трлн. куб. м).

К примеру, возможные ресурсы газогидратов в США по типу месторождений показывает Рисунок (в сравнении с ресурсами природного газа). «Газогидратная пирамида» также отражает потенциал добычи газа из газогидратных месторождений различного типа. На вершине пирамиды находятся хорошо разведанные месторождения в Арктике вблизи существующей инфраструктуры, подобные месторождению Маллик в Канаде. Далее следуют менее изученные газогидратные образования со сходными геологическими характеристиками (на Северном склоне Аляски), но требующие развития инфраструктуры. По последним оценкам, технически извлекаемые ресурсы газогидратов Северного склона Аляски составляют 2,4 трлн. куб. м газа. Вслед за арктическими запасами расположены глубоководные месторождения средней и высокой насыщенности. Так как стоимость их разработки потенциально крайне высока, наиболее перспективным регионом для этого считается Мексиканский залив, где уже создана инфраструктура нефте- и газодобычи. Масштаб этих ресурсов пока не очень хорошо известен, но Служба управления минеральными ресурсами США ведет их изучение.

Рис 1 «Газогидратнаяпирамида»

У подножия пирамиды (Рисунок 2) обозначены скопления газогидратов, которые характеризуются крайне неравномерным распределением в больших объемах мелкозернистых и недеформированных осадочных пород. Типичный пример такого скопления - глубоководное месторождение у хребта Блейк (побережье американского штата Каролина). При текущем уровне развития технологий их разработка не представляется возможной.

В промышленном масштабе

В промышленном масштабе добыча метана из газогидратных залежей нигде в мире не ведется, и запланирована она только в Японии - на 2018-2019 годы. Тем не менее ряд стран реализуют исследовательские программы. Наиболее активны здесь США, Канада и Япония.

Дальше всех в изучении потенциала разработки залежей газогидратов продвинулась Япония. В начале 2000-х годов страна начала реализацию программы по освоению газогидратов. Для ее поддержки по решению государственных органов был организован исследовательский консорциум MH21, нацеленный на создание технологической основы промышленной разработки залежей газогидратов. В феврале 2012 года Японская национальная корпорация по нефти, газу и металлам (JOGMEC) начала пробное бурение скважин в Тихом океане, в 70 км к югу от полуострова Ацуми, для получения гидратов метана. А в марте 2013 года Япония (первой в мире) приступила к тестовому извлечению метана из газогидратов в открытом море. По оценке JOGMEC, с имеющимися запасами метангидратов на шельфе страны Япония может покрыть свои потребности в природном газе на 100 лет вперед.

В области освоения газогидратов Япония развивает научное сотрудничество с Канадой, США и другими странами. В Канаде действует обширная исследовательская программа; совместно с японскими специалистами проводилось бурение скважин в устье реки Маккензи (месторождение Маллик). Исследовательские проекты газогидратов США сосредоточены в зоне вечной мерзлоты на Аляске и на глубоководье в Мексиканском заливе.

Менее масштабные, но тем не менее заметные исследования газогидратов проводят такие страны, как Южная Корея, Китай и Индия. Южная Корея занимается оценкой газогидратного потенциала в Японском море. Исследования показали, что наиболее перспективно для дальнейшей разработки месторождение Уллеунг. Индия создала свою национальную исследовательскую программу по газогидратам в середине 1990-х годов. Главным объектом ее исследований является месторождение Кришна-Годавари в Бенгальском заливе.

Китайская программа по газогидратам включает исследования шельфа Южно-Китайского моря вблизи провинции Гуандун и вечной мерзлоты на плато Цинхай в Тибете.Ряд других стран, в числе которых Норвегия, Мексика, Вьетнам и Малайзия, такжепроявляют интерес к исследованиям газогидратов. Исследовательские программы по изучению газогидратов есть и в Европейском союзе: например, в 2000-е годы действовала программа HYDRATECH (Техника оценки метангидратов на европейскомшельфе) и программа HYDRAMED (Геологическая оценка газогидратов в Средиземном море). Но европейские программы отличает акцент на научных и экологических вопросах.

Газогидраты в России

Россия обладает собственными месторождениями газогидратов. Их наличие подтверждено на дне озера Байкал, Черного, Каспийского и Охотского морей, а также на Ямбургском, Бованенковском, Уренгойском, Мессояхском месторождениях. Разработка газогидратов на этих месторождениях не велась, а их наличиерассматривалось как фактор, усложняющий разработку конвенционного газа (в случае его наличия). Также высказываются предположения, подтверждаемые теоретической аргументацией, о наличии большого числа месторождений газогидратов на всей площади арктического шельфа России.

Геологические исследования газогидратов начались в СССР еще в 1970-е годы. В современной России в основном проводятся лабораторные исследования газогидратов: например, создание технологий предотвращения их образования в газотранспортных системах или определение их физических, химических и иных свойств. Среди центров изучения газогидратов в России можно отметить МГУ, Сибирское отделение РАН, ООО «Газпром ВНИИГАЗ», Университет нефти и газа им. Губкина.

В 2003 году прикладные исследования по оценке газогидратного потенциала в России инициировало ОАО «Газпром». Предварительные оценки «Газпрома ВНИИГАЗ» указывают на наличие в стране ресурсов газогидратов в 1 100 трлн. куб. м. В середине 2013 года появилась информация о том, что Дальневосточный геологический институт РАН предложил «Роснефти» изучить возможность добычи газовых гидратов на шельфе Курил, оценивая их потенциал в 87 трлн. куб. м. Специализированные государственные программы по исследованию и добыче газогидратов по примеру отмеченных выше стран в России отсутствуют. В Генеральной схеме развития газовой отрасли до 2030 года газогидраты упоминаются
лишь один раз в контексте ожидаемых направлений научно-технического прогресса.

В целом разработка газогидратов в России из подтвержденных месторождений представляется перспективной после значительного удешевления технологии и только в районах с уже существующей газотранспортной инфраструктурой.

Гидраты природных газов

Исследованиями доказано, что в определённых термодинамических условиях природный газ в земной коре вступает в соединение с пластовой поровой водой, образуя твёрдые соединения - гидраты газов, крупные скопления которых образуют газогидратные залежи.

Природный газ в связанном гидратном состоянии характеризуется иными свойствами, чем в свободном состоянии.

Гидраты газов представляют собой твёрдые соединения (клатраты), в которых молекулы газа при определённых давлениях и температурах заполняют структурные пустоты кристаллической решетки, образованной молекулами воды с помощью прочной водородной связи. Молекулы воды при образовании гидрата и сооружении ажурных полостей как бы раздвигаются молекулами газа, заключенными в эти полости, - удельный объем воды в гидратном состоянии возрастает до 1,26-1,32 см3/г (удельный объем воды в состоянии льда составляет 1,09 см3/г).

В настоящее время получены и изучены равновесные параметры гидратообразования практически всех известных природных и синтетических газов. Исключение составляют водород, гелий и неон.

Цель моей работы - узнать, что такое гидраты природных газов и рассмотреть газогидратные залежи на примерах.

Задачами являются:

1. узнать историю изучения природных газов

2. изучить свойства гидратов

3. рассмотреть месторождения

Газовые гидраты (также гидраты природных газов или клатраты) - кристаллические соединения, образующиеся при определённых термобарических условиях из воды и газа. Имя «клатраты» (от лат. clathratus - «сажать в клетку»), было дано Пауэллом в 1948 году. Гидраты газа относятся к нестехиометрическим соединениям, то есть соединениям переменного состава.

Впервые гидраты газов (сернистого газа и хлора) наблюдали ещё в конце XVIII века Дж. Пристли, Б. Пелетье и В. Карстен. Первые описания газовых гидратов были приведены Г. Дэви в 1810 году (гидрат хлора). В 1823 г. Фарадей приближённо определил состав гидрата хлора, в 1829 г. Левит обнаружил гидрат брома, а в 1840 г. Вёлер получит гидрат H2S. К 1888 году П. Виллар получает гидраты CH4, C2H6, C2H4, C2H2 и N2O.

Клатратная природа газовых гидратов подтверждена в 1950-е гг. после рентгеноструктурных исследований Штакельберга и Мюллера, работ Полинга, Клауссена.

В 1940-е годы советские учёные высказывают гипотезу о наличии залежей газовых гидратов в зоне вечной мерзлоты (Стрижов, Мохнаткин, Черский). В 1960-е годы они же обнаруживают первые месторождения газовых гидратов на севере СССР. Одновременно с этим возможность образования и существования гидратов в природных условиях находит лабораторное подтверждение (Макогон).

С этого момента газовые гидраты начинают рассматриваться как потенциальный источник топлива. По различным оценкам, запасы углеводородов в гидратах составляют от 1.8×1014 до 7.6×1018 м³(Рис.1)

Рис.1. Запасы углеводородных ресурсов.

Выясняется их широкое распространение в океанах и криолитозоне материков, нестабильность при повышении температуры и понижении давления.

В 1969 г. началась разработка Мессояхского месторождения в Сибири, где, как считается, впервые удалось (по чистой случайности) извлечь природный газ непосредственно из гидратов (до 36 % от общего объёма добычи по состоянию на 1990 г.).

Сейчас природные газовые гидраты приковывают особое внимание как возможный источник ископаемого топлива, а также участник изменений климата (см. Гипотеза о метангидратном ружье).

Общие сведения о гидратах

Природный газ, насыщенный парами воды, при высоком давлении и при определенной положительной температуре способен образовывать твердые соединения с водой - гидраты.

Гидраты – это физико-химические соединения углеводородных и не углеводородных газов с водой. Гидраты природных газов являются смешанными.

Рис.2. Газогидрат метана

По внешнему виду похожи на рыхловатый снег (Рис.2.). Основным условие для образования гидратов являются снижение температуры и повышение давления и наличие влаги. На их образование влияет состав газа. Сероводород и углекислый газ способствует образованию гидратов особенно сероводород, даже при незначительном содержании сероводорода повышается температура гидратообразования. Азот, углеводороды тяжелее бутана, а также минерализированная пластовая вода ухудшают условия образования гидратов.

Рис. 3. Равновесные гидратообразования.

Вероятность образования гидратов увеличивается с повышением давления и понижением температуры, так как повышается влагоемкость газа (Рис.3). В транспортируемом газе всегда присутствует определенное количество воды и если оно такого, что газ насыщается влагой, то при снижении температуры ниже «точки росы по воде», в газопроводе будут образовываться гидраты.

Гидраты относятся к веществам, в которых молекулы одних компонентов размещены в полостях решетки между узлами ассоциированных молекул другого компонента. Такие соединения обычно называют твердыми растворами внедрения, а иногда соединениями включения.

Рис. 4. Структура образования гидратов.

Молекулы гидратообразователей в полостях между узлами ассоциированных молекул воды гидратной решетки удерживаются с помощью Ван-дер-Ваальсовых сил притяжения. Гидраты образуются в виде двух структур, полости которых заполняются молекулами гидратообразователей частично или полностью (Рис. 4). В 1 (а) структуре 46 молекул воды образуют две полости с внутренним диаметром 5,2 * 10 - 10 м и шесть полостей с внутренним диаметром 5,9 *10 - 10 м; во II (б) структуре 136 молекул воды образуют восемь больших полостей с внутренним диаметром 6,9*10 - 10 м и шестнадцать малых полостей с внутренним диаметром 4,8*10 - 10 м.

При заполнении восьми полостей гидратной решетки состав гидратов структуры 1 выражается формулой 8M - 46Н2О или М - 5,75Н2О, где М - гидратообразователь.

Свойства гидратов

Природные газовые гидраты представляют собой метастабильный минерал, образование и разложение которого зависит от температуры, давления, химического состава газа и воды, свойств пористой среды и др.

Морфология газогидратов весьма разнообразна. В настоящее время выделяют три основных типа кристаллов:

Массивные кристаллы. Формируются за счёт сорбции газа и воды на всей поверхности непрерывно растущего кристалла.

Вискерные кристаллы. Возникают при туннельной сорбции молекул к основанию растущего кристалла.

Гель-кристаллы. Образуются в объёме воды из растворённого в ней газа при достижении условий гидратообразования.

В пластах горных пород гидраты могут быть как распределены в виде микроскопических включений, так и образовывать крупные частицы, вплоть до протяжённых пластов многометровой толщины.

Благодаря своей клатратной структуре единичный объём газового гидрата может содержать до 160-180 объёмов чистого газа. Плотность гидрата ниже плотности воды и льда (для гидрата метана около 900 кг/м³).

При повышении температуры и уменьшении давления гидрат разлагается на газ и воду с поглощением большого количества теплоты. Разложение гидрата в замкнутом объёме либо в пористой среде (естественные условия) приводит к значительному повышению давления.

Кристаллогидраты обладают высоким электрическим сопротивлением, хорошо проводят звук, и практически непроницаемы для свободных молекул воды и газа. Для них характерна аномально низкая теплопроводность (для гидрата метана при 273 К в пять раз ниже, чем у льда).

Для описания термодинамических свойств гидратов в настоящее время широко используется теория Ван-дер-Ваальса (внук)- Платтеу. Основные положения данной теории:

Решётка хозяина не деформируется в зависимости от степени заполнения молекулами-гостями либо от их вида.

В каждой молекулярной полости может находиться не более одной молекулы-гостя.

Взаимодействие молекул-гостей пренебрежимо мало.

К описанию применима статистическая физика.

Несмотря на успешное описание термодинамических характеристик, теория Ван-дер-Ваальса - Платтеу противоречит данным некоторых экспериментов. В частности, показано, что молекулы-гости способны определять как симметрию кристаллической решётки гидрата, так и последовательность фазовых переходов гидрата. Помимо того, обнаружено сильное воздействие гостей на молекулы-хозяева, вызывающее повышение наиболее вероятных частот собственных колебаний.

Строение гидратов

В структуре газогидратов молекулы воды образуют ажурный каркас (то есть решётку хозяина), в котором имеются полости. Установлено, что полости каркаса обычно являются 12- («малые» полости), 14-, 16- и 20-гранниками («большие» полости), немного деформированными относительно идеальной формы. Эти полости могут занимать молекулы газа («молекулы-гости»). Молекулы газа связаны с каркасом воды ван-дер-ваальсовскими связями. В общем виде состав газовых гидратов описывается формулой M·n·H2O, где М - молекула газа-гидратообразователя, n - число молекул воды, приходящихся на одну включённую молекулу газа, причём n - переменное число, зависящее от типа гидратообразователя, давления и температуры.

Полости, комбинируясь между собой, образуют сплошную структуру различных типов. По принятой классификации они называются КС, ТС, ГС - соответственно кубическая, тетрагональная и гексагональная структура. В природе наиболее часто встречаются гидраты типов КС-I, КС-II, в то время как остальные являются метастабильными.

Газовые гидраты в природе

Большинство природных газов (CH4, C2H6, C3H8, CO2, N2, H2S, изобутан и т. п.) образуют гидраты, которые существуют при определённых термобарических условиях. Область их существования приурочена к морским донным осадкам и к областям многолетнемёрзлых пород. Преобладающими природными газовыми гидратами являются гидраты метана и диоксида углерода.

При добыче газа гидраты могут образовываться в стволах скважин, промышленных коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт, гликоли, 30%-ный раствор CaCl2), а также поддерживают температуру потока газа выше температуры гидратообразования с помощью подогревателей, теплоизоляцией трубопроводов и подбором режима эксплуатации, обеспечивающего максимальную температуру газового потока. Для предупреждения гидратообразования в магистральных газопроводах наиболее эффективна газоосушка - очистка газа от паров воды.

Условия залегания газогидратов

Гидраты газов представляют собой твердые соединения (клатраты), в которых молекулы газа при определенных давлении и температуре заполняют структурные пустоты кристаллической решетки, образованной молекулами воды с помощью водородной связи. Молекулы воды как бы раздвигаются молекулами газа - плотность воды в гидратном состоянии возрастает до 1,26 - 1,32 см3/г (плотность льда 1,09см3/г). Один объем воды в гидратном состоянии связывает в зависимости от характеристики исходного газа от 70 до 300 объемов газа.

Рисунок ниже представляет собой диаграмму гетерогенного состояния газов (по Ю.Ф. Макогону):

1 - N2; 2 - СН4; 3 - СО2;

природная газовая смесь с относительной плотностью по воздуху: 4 - 0,6, 5 - 0,8: 6 - C2H6.; 7 - С3Н8: 8 -H2S

Условия образования гидратов определяются составом газа, состоянием воды, внешними давлением и температурой и выражаются диаграммой гетерогенного состояния в координатах р - Т (рис. 5). Для заданной температуры повышение давления выше давления, соответствующего равновесной кривой, сопровождается соединением молекул газа с молекулами воды и образованием гидратов. Обратное снижение давления (или повышение температуры при неизменном давлении) сопровождается разложением гидрата на газ и воду.

Плотность гидратов природных газов составляет от 0,9 до 1,1 г/см3.

Газогидратные залежи - это залежи, содержащие газ, находящийся частично или полностью в гидратном состоянии (в зависимости от термодинамических условий и стадии формирования). Для формирования и сохранения газогидратных залежей не нужны литологические покрышки: они сами являются непроницаемыми экранами, под которыми могут накапливаться залежи нефти и свободного газа. Газогидратная залежь внизу может контактировать с пластовой подошвенной водой, газовой залежью или непроницаемыми пластами.

Процесс образования гидратов происходит с выделением тепла от 14 до 134 кДж/моль при t > 00 С. При t < 00 C теплота гидратообразования составляет 16-30 кДж/моль.

Газогидратная залежь снизу может контактировать с пластовой, подошвенной или крыльевой водой, со свободной газовой, газоконденсатной или нефтяной залежью или газонепроницаемыми пластами. ГГЗ приурочены к охлаждённым разрезам осадочного чехла земной коры на материках и в акватории Мирового океана.

Как правило, в пределах материков ГГЗ приурочены к районам распространения многолетнемёрзлых пород. На материках глубина залегания этих залежей достигает 700-1500 м.

Как известно, большая часть дна мирового океана сложена осадочными породами мощностью от десятков до тысячи и более метров. Современный термодинамичекий режим придонной части океана, начиная с глубин 150-500м, соответствует условиям существования гидратов природных газов.

Присутствие гидратов в разрезе можно обнаружить стандартными методами каротажа. Гидратсодержащие пласты характеризуются:

Незначительной амплитудой ПС;

Отсутствием или малым значением приращения показаний микроградиент-зонда;

Интенсивностью вторичной a активности, близкой к интенсивности водонасыщенных пластов;

Отсутствием глинистой корки и наличием каверн;

Значительной (в большинстве случаев) величиной rк; повышенной скоростью прохождения акустических волн и др.

В основе разработки газогидратных залежей лежит принцип перевода газа в залежи из гидратного состояния в свободное и отбора его традиционными методами с помощью скважин. Перевести газ из гидратного состояния в свободное можно путем закачки в пласт катализаторов для разложения гидрата; повышения температуры залежи выше температуры разложения гидрата; снижения давления ниже давления разложения гидрата; термохимического, электроакустического и других воздействий на газогидратные залежи.

При вскрытии и разработке газогидратных залежей необходимо иметь в виду их специфические особенности, а именно: резкое увеличение объема газа при переходе его в свободное состояние; постоянство пластового давления, соответствующего определенной изотерме разработки газогидратной залежи; высвобождение больших объемов воды при разложении гидрата и др.

Научные исследования

В последние годы интерес к проблеме газовых гидратов во всем мире значительно усилился. Рост активности исследований объясняется следующими основными факторами:

активизацией поисков альтернативных источников углеводородного сырья в странах, не обладающих ресурсами энергоносителей, так как газовые гидраты являются нетрадиционным источником углеводородного сырья, опытно-промышленное освоение, которого может начаться в ближайшие годы;

необходимостью оценки роли газовых гидратов в приповерхностных слоях геосферы, особенно в связи с их возможным влиянием на глобальные климатические изменения;

изучением закономерностей образования и разложения газовых гидратов в земной коре в общетеоретическом плане с целью обоснования поисков и разведки традиционных месторождений углеводородов (природные гидратопроявления могут служить маркерами более глубокозалегающих обычных месторождений нефти и газа);

активным освоением месторождений углеводородов, расположенных в сложных природных условиях (глубоководный шельф, полярные регионы), где проблема техногенных газогидратов обостряется;

целесообразностью сокращения эксплуатационных затрат на предупреждение гидратообразования в промысловых системах добычи газа за счёт перехода на энерго-ресурсосберегающие и экологически чистые технологии;

возможностью использования газогидратных технологий при разработке, хранении и транспорте природного газа.

В последние годы (после проведения в 2003 году совещания в ОАО «Газпром») исследования гидратов в России продолжались в различных организациях как посредством госбюджетного финансирования (два интеграционных проекта Сибирского отделения РАН, небольшие гранты РФФИ, грант губернатора Тюмени, грант министерства высшего образования РФ), так и за счёт грантов международных фондов - ИНТАС, СРДФ, ЮНЕСКО (по программе «плавучий университет» - морские экспедиции под эгидой ЮНЕСКО под лозунгом Training Through Research - обучение через исследования), КОМЕКС (Kurele-Okhosk-Marine Experiment), ЧАОС (Carbon-Hydrate Accumulations in the Okhotsk Sea) и др.

В 2002-2004 гг. исследования по нетрадиционным источникам углеводородов, включая газовые гидраты (с учетом коммерческих интересов ОАО «Газпром»), продолжались в ООО «Газпром ВНИИГАЗ» и ОАО «Промгаз» при небольшом масштабе финансирования. В настоящее время исследования по газовым гидратам проводятся в ОАО «Газпром» (главным образом, в ООО «Газпром ВНИИГАЗ»), в институтах Российской академии наук, в университетах.

Исследования геологических и технологических проблем газовых гидратов были начаты в середине 60-х годов специалистами ВНИИГАЗа. Вначале ставились и решались технологические вопросы предупреждения гидратообразования, затем тематика постепенно расширялась: включались в сферу интересов кинетические аспекты гидратообразования, далее значительное внимание было уделено геологическим аспектам, в частности возможностям существования газогидратных залежей, теоретическим проблемам их освоения.

Геологические исследования газовых гидратов

В 1970 году в Государственный реестр открытий СССР было внесено научное открытие «Свойство природных газов находиться в твёрдом состоянии в земной коре» под № 75 с приоритетом от 1961 г., сделанное российскими учеными В. Г. Васильевым, Ю. Ф. Макогоном, Ф. Г. Требиным, А. А. Трофимуком и Н. В. Черским. После этого геологические исследования газовых гидратов получили серьёзный импульс. Прежде всего, были разработаны графоаналитические методы выделения термодинамических зон стабильности газогидратов в земной коре (ЗСГ). При этом выяснилось, что зона стабильности гидратов (ЗСГ) метана, наиболее распространенного в земной коре углеводородного газа, покрывает до 20 % суши (в районах распространения криолитозоны) и до 90 % дна океанов и морей.

Эти сугубо теоретические результаты активизировали поиски гидратосодержащих пород в природе: первые успешные результаты были получены сотрудниками ВНИИГАЗа А. Г. Ефремовой и Б. П. Жижченко при донном пробоотборе в глубоководной части Чёрного моря в 1972 году. Они визуально наблюдали вкрапления гидратов, похожие на иней в кавернах извлеченного со дна грунта. Фактически, это первое, официально признанное в мире наблюдение природных газовых гидратов в породах. Данные А. Г. Ефремовой и Б. П. Жижченко впоследствии многократно цитировались зарубежными и отечественными авторами. На основе их исследований в США были разработаны первые методы отбора образцов субмаринных газогидратов. Позже А. Г. Ефремова, работая в экспедиции по донному пробоотбору в Каспийском море (1980 г.), также впервые в мире установила гидратоносность донных отложений этого моря, что позволило при более поздних детализированных исследованиях другим ученым (Г. Д. Гинсбург, В. А. Соловьев и др.) выделить в Южном Каспии гидратоносную провинцию (связанную с грязевулканизмом).

Большой вклад в геологические и геофизические исследования гидратосодержащих пород внесли сотрудники Норильской комплексной лаборатории ВНИИГАЗа М. Х. Сапир, А. Э. Беньяминович и др., изучавшие Мессояхское газовое месторождение, начальные пластовые Р, Т-условия которого практически совпадали с условиями гидратообразования метана. Этими исследователями в начале 70-х годов были заложены принципы распознавания гидратосодержащих пород по данным комплексного скважинного каротажа. В конце 70-х годов исследования в этой области в СССР практически прекратились. В то же время, в США, Канаде, Японии и других странах они получили развитие и к настоящему времени отработаны методики геофизического выделения гидратонасыщенных пород в геологических разрезах по данным комплекса каротажных данных. В России на базе ВНИИГАЗа были поставлены одни из первых экспериментальных исследований в мире по моделированию гидратообразования в дисперсных породах. Так, А. С. Схаляхо (1974 г.) и В. А. Ненахов (1982 г.) путём насыщения гидратами песчаных образцов установили закономерность изменения относительной проницаемости породы по газу в зависимости от гидратонасыщенности (А. С. Схаляхо) и предельный градиент сдвига поровой воды в гидратосодержащих породах (В. А. Ненахов) - две важные для прогноза добычи газогидратного газа характеристики.

Также была проведена важная работа Е. В. Захарова и С. Г. Юдина (1984 г.) по перспективам поиска гидратосодержащих отложений в Охотском море. Эта публикация оказалась прогностической: через два года после её опубликования появилась целая серия статей об обнаружении гидратосодержащих отложений при сейсмопрофилировании, донном пробоотборе, и даже при визуальном наблюдении с подводных обитаемых аппаратов в различных частях Охотского моря. К настоящему времени ресурсы гидратного газа России только в обнаруженных субмаринных скоплениях оцениваются в несколько трлн.м³. Несмотря на прекращение финансирования исследований по природным газогидратам в 1988 году, работы во ВНИИГАЗе были продолжены В. С. Якушевым, В. А. Истоминым, В. И. Ермаковым и В. А. Скоробогатовым на безбюджетной основе (исследования природных газогидратов не включались в официальную тематику института вплоть до 1998 года). Особую роль в организации и постановке исследований сыграл профессор В. И. Ермаков, который постоянно уделял внимание последним достижениям в области природных газогидратов и поддерживал эти исследования во ВНИИГАЗе на протяжении всей своей работы в институте.

В 1986-1988 гг. были разработаны и сконструированы две оригинальные экспериментальные камеры по исследованию газогидратов и гидратосодержащих пород, одна из которых позволяла наблюдать за процессом образования и разложения гидратов углеводородных газов под оптическим микроскопом, а другая - проводить изучение образования и разложения гидратов в породах различного состава и строения благодаря сменной внутренней гильзе.

К настоящему времени подобные камеры в модифицированном виде для исследований гидратов в поровом пространстве используются в Канаде, Японии, России и других странах. Проведенные экспериментальные исследования позволили обнаружить эффект самоконсервации газогидратов при отрицательных температурах.

Он заключается в том, что если монолитный газогидрат, полученный при обычных равновесных условиях, охладить до температуры ниже 0°С и сбросить давление над ним до атмосферного, то после первичного поверхностного разложения, газогидрат самоизолируется от окружающей среды тонкой пленкой льда, препятствующей дальнейшему разложению. После этого гидрат может храниться длительное время при атмосферном давлении (зависит от температуры, влажности и других параметров внешней среды). Обнаружение этого эффекта внесло значительный вклад в изучение природных газогидратов.

Разработка методики получения и изучения гидратосодержащих образцов различных дисперсных пород, уточненение методики изучения природных гидратосодержащих образцов, проведение первые исследования природных гидратосодержащих образцов, поднятых из мерзлой толщи Ямбургского ГКМ (1987 г.) подтвердили существование гидратов метана в «законсервированном» виде в мерзлой толще, а также позволили установить новый тип газогидратных залежей - реликтовые газогидратные залежи, распространенные вне современной ЗСГ.

Кроме того, эффект самоконсервации открыл новые возможности для хранения и транспорта газа в сконцентрированном виде, но без повышенного давления. Впоследствии эффект самоконсервации экспериментально был подтвержден исследователями в Австрии (1990 г.) и Норвегии (1994 г.) и в настоящее время исследуется специалистами из разных стран (Япония, Канада, США, Германия, Россия).

В середине 90-тых годов ВНИИГАЗом в содружестве с Московским Государственным Университетом (кафедра геокриологии - доцент Е. М. Чувилин с сотрудниками) были проведены исследования образцов керна из интервалов газопроявлений из толщи ММП в южной части Бованенковского ГКМ по методике, разработанной ранее при исследованиях образцов ММП Ямбургского ГКМ.

Результаты исследований показали присутствие в поровом пространстве мерзлых пород рассеянных реликтовых газогидратов. Аналогичные результаты позже были получены и при исследовании ММП в дельте реки Маккензи (Канада), где гидраты были идентифицированы не только по предложенной российской методике, но и наблюдались в керне визуально.

Экспериментальные и теоретические исследования свойств газовых гидратов

В 60-70-тые годы основное внимание уделялось условиям образования газовых гидратов из бинарных и многокомпонентных смесей, в том числе и в присутствии ингибиторов гидратообразования.

Экспериментальные исследования проводились специалистами ВНИИГАЗа Б. В. Дегтяревым, Э. Б. Бухгалтером, В. А. Хорошиловым, В. И. Семиным и др. На базе этих исследований были предложены первые эмпирические методы расчета фазовых равновесий газовых гидратов и разработаны инструкции по предупреждению гидратообразования в системах добычи газа.

Освоение Оренбургского месторождения с аномально-низкими пластовыми температурами привело к необходимости изучения проблем, связанных с гидратообразованием сероводородсодержащих газов. Это направление разрабатывалось А. Г. Бурмистровым. Им были получены практически важные данные по гидратообразованию в трехкомпонентных газовых смесях «метан - сероводород - диоксид углерода» и разработаны уточненные методики расчета применительно к сероводородсодержащим природным газам месторождений Прикаспийской впадины.

Следующий этап исследований термодинамики гидратообразования связан с освоением гигантских северных месторождений - Уренгойского и Ямбургского. Для совершенствования методов предупреждения гидратообразования применительно к системам сбора и промысловой обработки конденсатсодержащих газов понадобились экспериментальные данные по условиям гидратообразования в высококонцентрированных растворах метанола в широком диапазоне температур и давлений. В ходе экспериментальных исследований (В. А. Истомин, Д. Ю. Ступин и др.) выяснились серьёзные методические трудности получения представительных данных при температурах ниже минус 20 °C. В связи с этим была разработана новая методика исследований фазовых равновесий газовых гидратов из многокомпонентных газовых смесей с регистрацией тепловых потоков в гидратной камере и при этом обнаружена возможность существования метастабильных форм газовых гидратов (на стадии их образования), что подтвердилось последующими исследованиями зарубежных авторов. Анализ и обобщение новых экспериментальных и промысловых данных (как отечественных, так и зарубежных) дал возможность разработать (В. А. Истомин, В. Г. Квон, А. Г. Бурмистров, В. П. Лакеев) инструкцию по оптимальному расходу ингибиторов гидратообразования (1987 г.).

В настоящее время во ВНИИГАЗе начат новый цикл исследований по предупреждению техногенного гидратообразования. Значительные усилия учёных А. И. Гриценко, В. И. Мурина, Е. Н. Ивакина и В. М. Булейко были посвящены исследованиям теплофизических свойств газовых гидратов (теплотам фазовых переходов, теплоемкостям и теплопроводностям).

В частности, В. М. Булейко, проводя калориметрические исследования газового гидрата пропана, обнаружил метастабильные состояния газовых гидратов при их разложении. Что касается кинетики гидратообразования, то ряд интересных результатов был получен В. А. Хорошиловым, А. Г. Бурмистровым, Т. А. Сайфеевым и В. И. Семиным, особенно по гидратообразованию в присутствии ПАВ.

В последние годы эти ранние исследования российских учёных были «подхвачены» специалистами ряда зарубежных фирм с целью разработки новых классов так называемых низкодозируемых ингибиторов гидратообразования.

Проблемы и перспективы, связанные с природными газогидратами

Освоение месторождений севера Западной Сибири с самого начала столкнулось с проблемой выбросов газа из неглубоких интервалов криолитозоны. Эти выбросы происходили внезапно и приводили к остановке работ на скважинах и даже к пожарам. Так как выбросы происходили из интервала глубин выше зоны стабильности газогидратов, то длительное время они объяснялись перетоками газа из более глубоких продуктивных горизонтов по проницаемым зонам и соседним скважинам с некачественным креплением. В конце 80-х годов на основе экспериментального моделирования и лабораторных исследований мерзлого керна из криолитозоны Ямбургского ГКМ удалось выявить распространение рассеянных реликтовых (законсервировавшихся) гидратов в четвертичных отложениях. Эти гидраты совместно с локальными скоплениями микробиального газа могут сформировать газоносные пропластки, откуда происходят выбросы при бурении. Присутствие реликтовых гидратов в неглубоких слоях криолитозоны было в дальнейшем подтверждено аналогичными исследованиями на севере Канады и в районе Бованенковского ГКМ. Таким образом, сформировались представления о новом типе газовых залежей - внутримерзлотных метастабильных газ-газогидратных залежах, которые, как показали испытания мерзлотных скважин на Бованенковском ГКМ, представляют собой не только осложняющий фактор, но и определённую ресурсную базу для местного газоснабжения.

Внутримерзлотные залежи содержат лишь незначительную часть ресурсов газа, которые связывают с природными газогидратами. Основная часть ресурсов приурочена к зоне стабильности газогидратов - тому интервалу глубин (обычно первые сотни метров), где имеют место термодинамические условия для гидратообразования. На севере Западной Сибири это интервал глубин 250-800 м, в морях - от поверхности дна до 300-400 м, в особо глубоководных участках шельфа и континентального склона до 500-600 м под дном. Именно в этих интервалах была обнаружена основная масса природных газогидратов.

В ходе изучения природных газогидратов выяснилось, что отличить гидратосодержащие отложения от мерзлых современными средствами полевой и скважинной геофизики не представляется возможным. Свойства мерзлых пород практически полностью аналогичны свойствам гидратосодержащих. Определенную информацию о присутствии газогидратов может дать каротажное устройство ядерного магнитного резонанса, но оно весьма дорогостояще и применяется крайне редко в практике геолого-разведочных работ. Основным показателем наличия гидратов в отложениях являются исследования керна, где гидраты либо видны при визуальном осмотре, либо определяются по замеру удельного газосодержания при оттаивании.

Перспективы применения в промышленности газогидратных технологий

Технологические предложения по хранению и транспорту природного газа в гидратном состоянии появились ещё в 40-х годах 20-ого века. Свойство газовых гидратов при относительно небольших давлениях концентрировать значительные объёмы газа привлекает внимание специалистов длительное время. Предварительные экономические расчеты показали, что наиболее эффективным оказывается морской транспорт газа в гидратном состоянии, причем дополнительный экономический эффект может быть достигнут при одновременной реализации потребителям транспортируемого газа и чистой воды, остающейся после разложения гидрата (при образовании газогидратов вода очищается от примесей). В настоящее время рассматриваются концепции морского транспорта природного газа в гидратном состоянии при равновесных условиях, особенно при планировании разработки глубоководных газовых (в том числе и гидратных) месторождений, удаленных от потребителя.

Однако в последние годы все большее внимание уделяется транспорту гидратов в неравновесных условиях (при атмосферном давлении). Ещё одним аспектом применения газогидратных технологий является возможность организации газогидратных хранилищ газа в равновесных условиях (под давлением) вблизи крупных потребителей газа. Это связано со способностью гидратов концентрировать газ при относительно низком давлении. Так, например, при температуре +4°С и давлении 40 атм., концентрация метана в гидрате соответствует давлению в 15 - 16 МПа (150-160 атм.).

Сооружение подобного хранилища не является сложным: хранилище представляет собой батарею газгольдеров, размещенных в котловане или ангаре, и соединённую с газовой трубой. В весенне-летний период хранилище заполняется газом, формирующим гидраты, в осенне-зимний - отдает газ при разложении гидратов с использованием низкопотенциального источника теплоты. Строительство подобных хранилищ вблизи теплоэнергоцентралей может существенно сгладить сезонную неравномерность в производстве газа и представлять собой реальную альтернативу строительству ПХГ в ряде случаев.

В настоящее время активно разрабатываются газогидратные технологии, в частности, для получения гидратов с использованием современных методов интенсификации технологических процессов (добавки ПАВ, ускоряющие тепломасооперенос; использование гидрофобных нанопорошков; акустические воздействия различного диапазона, вплоть до получения гидратов в ударных волнах и др.).

Добыча гидратов природного газа

На сегодняшний день разрабатывается 3 основных способа добычи гидратов природного газа. Все они основаны на применении диссоциации - процесса, в ходе которого вещество распадается на более простые составляющие. В случае с гидратами природного газа диссоциация проходит при увеличении температуры и снижении давления, когда кристаллы льда тают или как-то изменяют свою форму, тем самым высвобождая молекулы природного газа, заключенные внутри кристалла.

Три основных перспективных метода добычи гидратов природного газа: термальное воздействие, снижение давления и воздействие ингибитором (веществом, замедляющим химические процессы, реакции).

Рис. 5. Способы добычи гидратов природного газа.

Термальное воздействие .

Этот метод основан на подаче тепла внутрь кристаллической структуры гидрата с целью повышения температуры и ускорения процесса диссоциации. Практическим примером такого метода может служить накачивание теплой морской воды внутрь слоя гидратов газа, залегающего на дне моря. Как только газ начнет высвобождаться из слоя морских отложений, его можно будет собрать.

Воздействие ингибитором

Некоторые виды спиртов, например метанол, действуют как ингибиторы при подаче внутрь слоя залегания гидратов газа, и вызывают изменение состава гидрата. Ингибиторы изменяют условия температуры и давления, способствуя диссоциации гидратов и высвобождению содержащегося в них метана.

Снижение давления.

В некоторых месторождениях гидратов есть участки, где природный газ уже

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Саратовский государственный технический университет имени Гагарина Ю.А.»

Факультет Экологии и Сервиса

Кафедра Геоэкологии и Инженерной Геологии

Курсовая работа

По дисциплине: «Геология нефти и газа»

На тему: «Гидраты природных газов»

Выполнил: студент 3 курса гр. Б-НФГДз31

Кутвин М.С.

Руководитель: Решетников М.В.

Саратов 2016

  • Введение
  • 1. История изучения гидратов газов
  • 2. Свойства гидратов
  • 3. Строение гидратов
  • 4. Газовые гидраты в природе
  • 5. Термобарические условия существования газов-гидратов
  • 6. Газы, способные к образованию гидратной формы в литосфере Земли
  • 7. Научные исследования газовых гидратов
  • 8. Новые методы наблюдения за образованием гидратов газов
  • 9. География распространения газов-гидратов
  • 10. Районы современной разведки на гидраты
  • 11. Проблема промышленного освоения газогидратной формы скопления углеводородов
  • 12. Методы добычи метана из гидратов
  • 13. Другие возможности использования гидратов газов
  • Заключение
  • Список литературы

Введение

Углеводороды представляют собой особые соединения широко распространенных элементов -- водорода и углерода. Эти природные соединения добывают и используют уже тысячи лет: при строительстве дорог и зданий в качестве связующего материала, при строительстве и изготовлении водонепроницаемых корабельных корпусов и корзин, в живописи, для создания мозаичных полотен, для приготовления пищи и освещения. Сначала их добывали из редких выходов на поверхность, а затем из скважин. За последние два столетия добыча нефти и газа достигла беспрецедентных масштабов. Сейчас нефть и газ являются источниками энергии для почти всех видов человеческой деятельности.

Гидраты природных газов являются особым сочетанием двух широко распространенных веществ, воды и природного газа. Если эти вещества вступают в контакт при высоком давлении и низкой температуре, то происходит формирование твердой массы, похожей на лед. Огромные объемы отложений в придонных слоях океанического дна и в полярных регионах они находятся в термобарических условиях, допускающих образование гидратов.

Синонимами термина гидраты являются газовые гидраты, метановые гидраты или клатраты (от греческого «каркас»). Основным структурным элементом гидратов является кристаллическая ячейка из молекул воды, внутри которой размещена молекула газа. Ячейки образуют плотную кристаллическую решетку. Структура гидратов подобна структуре льда, но отличается от последней тем, что молекулы газа расположены внутри кристаллических ячеек, а не между ними. Внешне гидраты похожи на лед, хотя увидеть их можно не часто. Однако они ведут себя совсем не так, как лед. Если поднести к ним спичку, они загораются.

Когда-нибудь, возможно уже в 21 веке, традиционные запасы углеводородов не смогут обеспечивать энергией растущую экономику и население. Тогда их место смогут занять так называемые нетрадиционные запасы углеводородов в виде газовых гидратов.

гидрат газ углеводород метан

1. История изучения гидратов газов

Первая публикация, связанная с гидратами газов, относится к 1811 г., когда английский химик X. Дэви, пропуская хлор через, воду при атмосферном давлении и температурах, близких к 0° С получил в стеклянной колбе желтоватый осадок -- гидрат хлора. Нестабильность полученного соединения и уровень инструментальных исследований тех лет не позволили ему детально изучить его свойства.

В 1823 г. Фарадеем были выполнены первые анализы состава гидрата хлора, а в 1884 г. Розебум предложил формулу состава гидрата хлора 8Н 2 0-С1 2 . В период между двадцатыми и восьмидесятыми годами прошлого века исследований гидратов газов почти не проводилось. Газогидратные соединения были забыты на долгие десятилетия, и лишь в восьмидесятых годах прошлого столетия начинается второй этап изучения гидратов газов. В течение пяти десятилетий были получены гидраты большинства индивидуальных газов и некоторых смесей. За этот период исследовались зависимости образования гидратов от давления и температуры, был определен приближенно состав гидратов, построены фазовые диаграммы. Результаты экспериментальных исследований обрабатывались с учетом достижений термодинамики того времени. Однако все исследования гидратов газов, выполненные в течение 120 лет -- вплоть до начала тридцатых годов XX в., носили чисто академический характер. Гидраты газов не использовались в промышленности, они не мешали технологическим процессам того времени и не находили практического применения. В тридцатых годах бурно развивающаяся газодобывающая промышленность поставила перед исследователями задачу серьезного изучения гидратов газов, в первую очередь с целью разработки методов предупреждения их образования и скопления в трубопроводах и аппаратах при добыче и транспорте газа.

В этот период была опубликована работа Гаммершмидта, в которой было показано, что осложнения в газопроводах в холодное время года связаны не с замерзанием воды, как это предполагалось, а с образованием гидратов транспортируемых газов.

Начался третий этап исследований гидратов газов. Период прикладного изучения гидратов газов длился более 20 лет. За этот период были разработаны практически все известные методы борьбы с гидратами. В последние десятилетия ведутся исследования некоторых свойств гидратов газов с привлечением современных инструментальных методов, развиваются серьезные теоретические исследования, в результате которых не только совершенствуются методы борьбы с гидратами, но и разрабатываются методы их практического использования в различных технологических процессах.

Особое место в изучении гидратов занимают исследования, связанные с открытием газогидратных залежей в осадочном чехле земной коры, сделанного группой ученых: В. Г. Васильевым, Ю. Ф. Макогоном, Ф. А. Требиным, А. А. Трофимуком и Н. В. Черским.

В 1940-е годы советские учёные высказывают гипотезу о наличии залежей газовых гидратов в зоне вечной мерзлоты (Стрижов, Мохнаткин, Черский). В 1960-е годы они же обнаруживают первые месторождения газовых гидратов на севере СССР. Одновременно с этим возможность образования и существования гидратов в природных условиях находит лабораторное подтверждение (Макогон).

С этого момента газовые гидраты начинают рассматриваться как потенциальный источник топлива. По различным оценкам, запасы углеводородов в гидратах составляют от 1.8Ч10 14 до 7.6Ч10 18 мі . Выясняется их широкое распространение в океанах и криолитозоне материков, нестабильность при повышении температуры и понижении давления.

В 1969 г. началась разработка Мессояхского месторождения в Сибири, где, как считается, впервые удалось (по чистой случайности) извлечь природный газ непосредственно из гидратов (до 36 % от общего объёма добычи по состоянию на 1990 г.)

2. Свойства гидратов

Природные газовые гидраты представляют собой метастабильный минерал, образование и разложение которого зависит от температуры, давления, химического состава газа и воды, свойств пористой среды и др.

Морфология газогидратов весьма разнообразна. В настоящее время выделяют три основных типа кристаллов:

· Массивные кристаллы. Формируются за счёт сорбции газа и воды на всей поверхности непрерывно растущего кристалла.

· Вискерные кристаллы. Возникают при туннельной сорбции молекул к основанию растущего кристалла.

· Гель-кристаллы. Образуются в объёме воды из растворённого в ней газа при достижении условий гидратообразования.

В пластах горных пород гидраты могут быть как распределены в виде микроскопических включений, так и образовывать крупные частицы, вплоть до протяжённых пластов многометровой толщины.

Благодаря своей клатратной структуре единичный объём газового гидрата может содержать до 160--180 объёмов чистого газа. Плотность гидрата ниже плотности воды и льда (для гидрата метана около 900 кг/мі).

Рис.1. Фазовая диаграмма гидрата метана

При повышении температуры и уменьшении давления гидрат разлагается на газ и воду с поглощением большого количества теплоты. Разложение гидрата в замкнутом объёме либо в пористой среде (естественные условия) приводит к значительному повышению давления.

Кристаллогидраты обладают высоким электрическим сопротивлением, хорошо проводят звук, и практически непроницаемы для свободных молекул воды и газа. Для них характерна аномально низкая теплопроводность (для гидрата метана при 273 К в пять раз ниже, чем у льда).

Для описания термодинамических свойств гидратов в настоящее время широко используется теория Ван-дер-Ваальса (внук)-- Платтеу. Основные положения данной теории:

· Решётка хозяина не деформируется в зависимости от степени заполнения молекулами-гостями либо от их вида.

· В каждой молекулярной полости может находиться не более одной молекулы-гостя.

· Взаимодействие молекул-гостей пренебрежимо мало.

· К описанию применима статистическая физика.

Несмотря на успешное описание термодинамических характеристик, теория Ван-дер-Ваальса -- Платтеу противоречит данным некоторых экспериментов. В частности, показано, что молекулы-гости способны определять, как симметрию кристаллической решётки гидрата, так и последовательность фазовых переходов гидрата. Помимо того, обнаружено сильное воздействие гостей на молекулы-хозяева, вызывающее повышение наиболее вероятных частот собственных колебаний.

3. Строение гидратов

Рис.2 Кристаллические модификации газогидратов

В структуре газогидратов молекулы воды образуют ажурный каркас (то есть решётку хозяина), в котором имеются полости. Установлено, что полости каркаса обычно являются 12- («малые» полости), 14-, 16- и 20-гранниками («большие» полости), немного деформированными относительно идеальной формы . Эти полости могут занимать молекулы газа («молекулы--гости»). Молекулы газа связаны с каркасом воды ван-дер-ваальсовскими связями. В общем виде состав газовых гидратов описывается формулой M·n·H 2 O, где М -- молекула газа-гидратообразователя, n -- число молекул воды, приходящихся на одну включённую молекулу газа, причём n -- переменное число, зависящее от типа гидратообразователя, давления и температуры.

Полости, комбинируясь между собой, образуют сплошную структуру различных типов. По принятой классификации они называются КС, ТС, ГС -- соответственно кубическая, тетрагональная и гексагональная структура. В природе наиболее часто встречаются гидраты типов КС-I, КС-II, в то время как остальные являются метастабильными.

4. Газовые гидраты в природе

Большинство природных газов (CH 4 , C 2 H 6 , C 3 H 8 , CO 2 , N 2 , H 2 S, изобутан и т. п.) образуют гидраты, которые существуют при определённых термобарических условиях. Область их существования приурочена к морским донным осадкам и к областям многолетнемёрзлых пород. Преобладающими природными газовыми гидратами являются гидраты метана и диоксида углерода.

При добыче газа гидраты могут образовываться в стволах скважин, промышленных коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы (метиловый спирт, гликоли, 30%-ный раствор CaCl 2), а также поддерживают температуру потока газа выше температуры гидратообразования с помощью подогревателей, теплоизоляцией трубопроводов и подбором режима эксплуатации, обеспечивающего максимальную температуру газового потока. Для предупреждения гидратообразования в магистральных газопроводах наиболее эффективна газоосушка -- очистка газа от паров воды.

5. Термобарические условия существования газов-гидратов

Каждый отдельный компонент имеет определенную критическую температуру, выше которой гидраты данного компонента не образуются. Такая температура определяется точкой пересечения равновесной кривой гидратообразования с кривой упругости паров данного компонента. Метан и азот, а также инертные газы не имеют критической температуры гидратообразования, так как линия упругости их паров заканчивается в критической точке газа до соприкосновения с кривой упругости паров гидрата.

Рис. 3. Условия образования гидратов индивидуальными компонентами компонентами природных газов

На рисунке 3 видно, что наибольшую критическую температуру имеет сероводород, который может образовывать гидраты при температуре 29,5°С и давлении 21 атм. С увеличением содержания в газе, так называемых, не гидратообразующих компонентов (N 2 , H 2 Не 2) давление образования гидратов повышается и при наличии их в смеси более 50% образование гидратов данной смеси становится невозможным.

6. Газы, способные к образованию гидратной формы в литосфере Земли

Еще в 1811 году английский химик Х.Дэви, пропуская хлор через воду при атмосферном давлении и температурах, близких к 273К, получил в стеклянной колбе желтоватый осадок - гидрат хлора. Как оказалось, это далеко не единственный газ, способный образовывать соединения с водой. Все низшие гомологи метана, углекислый газ, азот, сероводород и др. образуют гидраты, которые образуются при определенных термобарических условиях.

Благоприятные условия для образования гидратов природных газов существуют как на суше (преимущественно в областях распространения многолетнемерзлых пород), так и практически на всей площади Мирового океана, что обусловлено благоприятным для их образования сочетанием температур и давлений.

В большинстве случаев, природные газогидраты представлены гидратами метана и диоксида углерода.

7. Научные исследования г азовы х гидрат ов

В последние годы интерес к проблеме газовых гидратов во всем мире значительно усилился. Рост активности исследований объясняется следующими основными факторами:

· активизацией поисков альтернативных источников углеводородного сырья в странах, не обладающих ресурсами энергоносителей, так как газовые гидраты являются нетрадиционным источником углеводородного сырья, опытно-промышленное освоение, которого может начаться в ближайшие годы;

· необходимостью оценки роли газовых гидратов в приповерхностных слоях геосферы, особенно в связи с их возможным влиянием на глобальные климатические изменения;

· изучением закономерностей образования и разложения газовых гидратов в земной коре в общетеоретическом плане с целью обоснования поисков и разведки традиционных месторождений углеводородов (природные гидратопроявления могут служить маркерами более глубокозалегающих обычных месторождений нефти и газа);

· активным освоением месторождений углеводородов, расположенных в сложных природных условиях (глубоководный шельф, полярные регионы), где проблема техногенных газогидратов обостряется;

· целесообразностью сокращения эксплуатационных затрат на предупреждение гидратообразования в промысловых системах добычи газа за счёт перехода на энерго-ресурсосберегающие и экологически чистые технологии;

· возможностью использования газогидратных технологий при разработке, хранении и транспорте природного газа.

В 1970 году в Государственный реестр открытий СССР было внесено научное открытие «Свойство природных газов находиться в твёрдом состоянии в земной коре» под № 75 с приоритетом от 1961 г., сделанное российскими учеными В. Г. Васильевым, Ю. Ф. Макогоном, Ф. Г. Требиным, А. А. Трофимуком и Н. В. Черским. После этого геологические исследования газовых гидратов получили серьёзный импульс. Прежде всего, были разработаны графоаналитические методы выделения термодинамических зон стабильности газогидратов в земной коре (ЗСГ). При этом выяснилось, что зона стабильности гидратов (ЗСГ) метана, наиболее распространенного в земной коре углеводородного газа, покрывает до 20 % суши (в районах распространения криолитозоны) и до 90 % дна океанов и морей.

Эти сугубо теоретические результаты активизировали поиски гидратосодержащих пород в природе: первые успешные результаты были получены сотрудниками ВНИИГАЗа А. Г. Ефремовой и Б. П. Жижченко при донном пробоотборе в глубоководной части Чёрного моря в 1972 году. Они визуально наблюдали вкрапления гидратов, похожие на иней в кавернах извлеченного со дна грунта. Фактически, это первое, официально признанное в мире наблюдение природных газовых гидратов в породах. Данные А. Г. Ефремовой и Б. П. Жижченко впоследствии многократно цитировались зарубежными и отечественными авторами. На основе их исследований в США были разработаны первые методы отбора образцов субмаринных газогидратов. Позже А. Г. Ефремова, работая в экспедиции по донному пробоотбору в Каспийском море (1980 г.), также впервые в мире установила гидратоносность донных отложений этого моря, что позволило при более поздних детализированных исследованиях другим ученым (Г. Д. Гинсбург, В. А. Соловьев и др.) выделить в Южном Каспии гидратоносную провинцию (связанную с грязевулканизмом).

Большой вклад в геологические и геофизические исследования гидратосодержащих пород внесли сотрудники Норильской комплексной лаборатории ВНИИГАЗа М. Х. Сапир, А. Э. Беньяминович и др., изучавшие Мессояхское газовое месторождение, начальные пластовые Р, Т-условия которого практически совпадали с условиями гидратообразования метана. Этими исследователями в начале 70-х годов были заложены принципы распознавания гидратосодержащих пород по данным комплексного скважинного каротажа. В конце 70-х годов исследования в этой области в СССР практически прекратились. В то же время, в США, Канаде, Японии и других странах они получили развитие и к настоящему времени отработаны методики геофизического выделения гидратонасыщенных пород в геологических разрезах по данным комплекса каротажных данных. В России на базе ВНИИГАЗа были поставлены одни из первых экспериментальных исследований в мире по моделированию гидратообразования в дисперсных породах. Так, А. С. Схаляхо (1974 г.) и В. А. Ненахов (1982 г.) путём насыщения гидратами песчаных образцов установили закономерность изменения относительной проницаемости породы по газу в зависимости от гидратонасыщенности (А. С. Схаляхо) и предельный градиент сдвига поровой воды в гидратосодержащих породах (В. А. Ненахов) -- две важные для прогноза добычи газогидратного газа характеристики.

Также была проведена важная работа Е. В. Захарова и С. Г. Юдина (1984 г.) по перспективам поиска гидратосодержащих отложений в Охотском море. Эта публикация оказалась прогностической: через два года после её опубликования появилась целая серия статей об обнаружении гидратосодержащих отложений при сейсмопрофилировании, донном пробоотборе, и даже при визуальном наблюдении с подводных обитаемых аппаратов в различных частях Охотского моря. К настоящему времени ресурсы гидратного газа России только в обнаруженных субмаринных скоплениях оцениваются в несколько трлн.м3. Несмотря на прекращение финансирования исследований по природным газогидратам в 1988 году, работы во ВНИИГАЗе были продолжены В. С. Якушевым, В. А. Истоминым, В. И. Ермаковым и В. А. Скоробогатовым на безбюджетной основе (исследования природных газогидратов не включались в официальную тематику института вплоть до 1998 года). Особую роль в организации и постановке исследований сыграл профессор В. И. Ермаков, который постоянно уделял внимание последним достижениям в области природных газогидратов и поддерживал эти исследования во ВНИИГАЗе на протяжении всей своей работы в институте.

В 1986--1988 гг. были разработаны и сконструированы две оригинальные экспериментальные камеры по исследованию газогидратов и гидратосодержащих пород, одна из которых позволяла наблюдать за процессом образования и разложения гидратов углеводородных газов под оптическим микроскопом, а другая -- проводить изучение образования и разложения гидратов в породах различного состава и строения благодаря сменной внутренней гильзе.

К настоящему времени подобные камеры в модифицированном виде для исследований гидратов в поровом пространстве используются в Канаде, Японии, России и других странах. Проведенные экспериментальные исследования позволили обнаружить эффект самоконсервации газогидратов при отрицательных температурах

Он заключается в том, что если монолитный газогидрат, полученный при обычных равновесных условиях, охладить до температуры ниже 0°С и сбросить давление над ним до атмосферного, то после первичного поверхностного разложения, газогидрат самоизолируется от окружающей среды тонкой пленкой льда, препятствующей дальнейшему разложению. После этого гидрат может храниться длительное время при атмосферном давлении (зависит от температуры, влажности и других параметров внешней среды). Обнаружение этого эффекта внесло значительный вклад в изучение природных газогидратов.

Разработка методики получения и изучения гидратосодержащих образцов различных дисперсных пород, уточненение методики изучения природных гидратосодержащих образцов, проведение первые исследования природных гидратосодержащих образцов, поднятых из мерзлой толщи Ямбургского ГКМ (1987 г.) подтвердили существование гидратов метана в «законсервированном» виде в мерзлой толще, а также позволили установить новый тип газогидратных залежей -- реликтовые газогидратные залежи, распространенные вне современной ЗСГ.

Кроме того, эффект самоконсервации открыл новые возможности для хранения и транспорта газа в сконцентрированном виде, но без повышенного давления. Впоследствии эффект самоконсервации экспериментально был подтвержден исследователями в Австрии (1990 г.) и Норвегии (1994 г.) и в настоящее время исследуется специалистами из разных стран (Япония, Канада, США, Германия, Россия).

В середине 90-тых годов ВНИИГАЗом в содружестве с Московским Государственным Университетом (кафедра геокриологии -- доцент Е. М. Чувилин с сотрудниками) были проведены исследования образцов керна из интервалов газопроявлений из толщи ММП в южной части Бованенковского ГКМ по методике, разработанной ранее при исследованиях образцов ММП Ямбургского ГКМ.

Результаты исследований показали присутствие в поровом пространстве мерзлых пород рассеянных реликтовых газогидратов. Аналогичные результаты позже были получены и при исследовании ММП в дельте реки Маккензи (Канада), где гидраты были идентифицированы не только по предложенной российской методике, но и наблюдались в керне визуально. В последние годы (после проведения в 2003 году совещания в ОАО «Газпром») исследования гидратов в России продолжались в различных организациях как посредством госбюджетного финансирования (два интеграционных проекта Сибирского отделения РАН, небольшие гранты РФФИ, грант губернатора Тюмени, грант министерства высшего образования РФ), так и за счёт грантов международных фондов -- ИНТАС, СРДФ, ЮНЕСКО (по программе «плавучий университет» -- морские экспедиции под эгидой ЮНЕСКО под лозунгом Training Through Research -- обучение через исследования), КОМЕКС (Kurele-Okhosk-Marine Experiment), ЧАОС (Carbon-Hydrate Accumulations in the Okhotsk Sea) и др.

В 2002--2004 гг. исследования по нетрадиционным источникам углеводородов, включая газовые гидраты (с учетом коммерческих интересов ОАО «Газпром»), продолжались в ООО «Газпром ВНИИГАЗ» и ОАО «Промгаз» при небольшом масштабе финансирования. В настоящее время исследования по газовым гидратам проводятся в ОАО «Газпром» (главным образом, в ООО «Газпром ВНИИГАЗ»), в институтах Российской академии наук, в университетах.

Исследования геологических и технологических проблем газовых гидратов были начаты в середине 60-х годов специалистами ВНИИГАЗа. Вначале ставились и решались технологические вопросы предупреждения гидратообразования, затем тематика постепенно расширялась: включались в сферу интересов кинетические аспекты гидратообразования, далее значительное внимание было уделено геологическим аспектам, в частности возможностям существования газогидратных залежей, теоретическим проблемам их освоения.

8. Новые методы наблюдения за образованием гидратов газов

Газовые гидраты можно получить в лаборатории из газа и воды, но это сложный процесс. Гидраты образуются очень медленно, даже если температура и давление в аппарате вполне соответствуют термодинамическим условиям устойчивости гидратов. Процесс оказывается в значительной мере саморегулируемым: по мере увеличения давления и снижения температуры на поверхности контакта газа и воды и образуется твердый слой гидратов,если он не подвергается внешнему воздействию, эффективно препятствует дальнейшему гидратообразованию. Этот гидратный барьер можно разрушить активным перемешиванием, и потому многие исследователи размещают в аппаратах дробилки для ускорения кристаллизации. И даже при таком подходе требуется несколько дней для заполнения небольшого аппарата.

Вначале 1996 г. группа исследователей под руководством Питера Брюера из исследовательского института в заливе Монтерей (MBARH), Калифорния, предложила новый способ изучения гидратообразования. Эти ученые установили, что у морского дна существуют не только давление и температура, необходимые для гидратообразования, но и дополнительные условия, при которых возможен непрерывный процесс образования природных гидратов.

В ходе эксперимента на морское дно доставляли с помощью подводного аппарата с дистанционным управлением (ПАДУ) прозрачные пластиковые трубки, заполненные морской водой или смесью осадков и морской воды. На соответствующей глубине в отверстия в днище каждой трубки подавали метан из емкости. Исследователи опасались, что за 3- 4 часа, имеющиеся в их распоряжении, реакция может не произойти. Однако, к их удивлению, уже через несколько минут образовалась полупрозрачная гидратная масса.

ПАДУ, которые использовали в этих исследованиях, были оснащены термометрами, манометрами, датчиками проводимости и навигационными приборами. Однако основным инструментом исследования была видеокамера, установленная на ПАДУ.Для наблюдения за образованием гидратов. В результате были получены великолепные графические материалы, но никакой количественной информации. Планируются дальнейшие эксперименты для изучения пространственной структуры и распределения гидратов в осадках.

9. География распространения газов-гидратов

Большая часть гидратов сосредоточена, по-видимому, на материковых окраинах, где глубина вод составляет примерно 500 м. В этих зонах вода выносит органический материал и содержит питательные вещества для бактерий, в результате жизнедеятельности, которых выделяется метан. Обычная глубина залегания СПГГ -- 100--500 м ниже морского дна, хотя иногда их обнаруживали и на морском дне. В районах с развитой многолетней мерзлотой они могут присутствовать и на меньших глубинах, так как температура на поверхности ниже. Крупные СПГГ были обнаружены на шельфе Японии, в районе Блейк Ридж к востоку от морской границы США, на материковой окраине района Каскадных гор около Ванкувера [Британская Колумбия, Канада] и на шельфе Новой Зеландии. Свидетельств об СПГГ, полученных путем прямого отбора образцов, во всем мире немного. Большая часть данных о нахождении гидратов получена косвенными путями: посредством сейсмических исследований, ГИС, по результатам измерений во время бурения, по изменению минерализации поровой воды.

Пока известен только один пример добычи газа из СПГГ -- на Мессояхском газовом месторождении в Сибири. Это месторождение, открытое в 1968 г., стало первым месторождением в северной части Западно-Сибирского бассейна, из которого был получен газ. К середине 80-х годов в бассейне было открыто более 60 других месторождений. Суммарные запасы этих месторождений составляли 22 трлн. М 3 или одну треть мировых запасав газа. Согласно оценке, сделанной до начала добычи, запасы Мессояхского месторождения были равны 79 млн. м 3 газа, из которых одна треть содержалась в гидратах, перекрывающих зону свободного газа.

Если не считать Мессояхского месторождения, наиболее изученными являются СПГГ в районе Прудо Бей -- Кипарук Ривер на Аляске. В 1972 г. на разведочной скважине ARC0 и Exxon 2 Норт-Уэст Эйлин на Северном склоне Аляски были подняты гидратосодержащие образцы в герметизированных керноотборниках.По градиентам давления и температуры в регионе можно рассчитать толщину зоны устойчивого состояния или стабильности гидратов в районе Прудо Бей -- Кипарук Ривер. Согласно оценкам, гидраты должны быть сосредоточены в интервале 210-- 950 м.

10. Районы современной разведки на гидраты

Специалисты Геологической службы Канады (GCSJ, Японской национальной нефтяной корпорации (JN0CI, Японской нефтяной разведочной компании (JAPEX1, Геологической службы США, Министерства энергетики США и нескольких компаний, в том числе Шлюмберже, провели исследование газогидратной залежи (ГТЗ) в дельте р. Маккензи (Северо-Западные территории, Канада) в рамках совместного проекта. В 1998 г. рядом со скважиной кампании Imperial Oil Ltd., вскрывшей скопление гидратов, была пробурена новая исследовательская скважина Маллик 2L-38. Цель этой работы заключалась в том, чтобы оценить свойства гидратов в естественном залегании и оценить возможность определения этих свойств с помощью скважинных приборов, спускаемых на кабеле.

Опыт, приобретенный в ходе исследований на скв. Маллик, оказался очень полезным для изучения свойств природных гидратов. JAPEX и связанные с ней группы решили начать новый проект бурения на гидраты во впадине Нанкай на шельфе Японии. Около десятка площадей были оценены как перспективные на гидраты по признаку наличия BSR(подобно- донные отражающие границы).

11. Проблема промышленного освоения газогидратной формы скопления угл еводородов

Внутримерзлотные залежи . Освоение месторождений севера Западной Сибири с самого начала столкнулось с проблемой выбросов газа из неглубоких интервалов криолитозоны. Эти выбросы происходили внезапно и приводили к остановке работ на скважинах и даже к пожарам. Так как выбросы происходили из интервала глубин выше зоны стабильности газогидратов, то длительное время они объяснялись перетоками газа из более глубоких продуктивных горизонтов по проницаемым зонам и соседним скважинам с некачественным креплением. В конце 80-х годов на основе экспериментального моделирования и лабораторных исследований мерзлого керна из криолитозоны Ямбургского ГКМ удалось выявить распространение рассеянных реликтовых (законсервировавшихся) гидратов в четвертичных отложениях. Эти гидраты совместно с локальными скоплениями микробиального газа могут сформировать газоносные пропластки, откуда происходят выбросы при бурении. Присутствие реликтовых гидратов в неглубоких слоях криолитозоны было в дальнейшем подтверждено аналогичными исследованиями на севере Канады и в районе Бованенковского ГКМ. Таким образом, сформировались представления о новом типе газовых залежей -- внутримерзлотных метастабильных газ-газогидратных залежах, которые, как показали испытания мерзлотных скважин на Бованенковском ГКМ, представляют собой не только осложняющий фактор, но и определённую ресурсную базу для местного газоснабжения.

Внутримерзлотные залежи содержат лишь незначительную часть ресурсов газа, которые связывают с природными газогидратами. Основная часть ресурсов приурочена к зоне стабильности газогидратов -- тому интервалу глубин (обычно первые сотни метров), где имеют место термодинамические условия для гидратообразования. На севере Западной Сибири это интервал глубин 250--800 м, в морях -- от поверхности дна до 300--400 м, в особо глубоководных участках шельфа и континентального склона до 500--600 м под дном. Именно в этих интервалах была обнаружена основная масса природных газогидратов.

В ходе изучения природных газогидратов выяснилось, что отличить гидратосодержащие отложения от мерзлых современными средствами полевой и скважинной геофизики не представляется возможным. Свойства мерзлых пород практически полностью аналогичны свойствам гидратосодержащих. Определенную информацию о присутствии газогидратов может дать каротажное устройство ядерного магнитного резонанса, но оно весьма дорогостояще и применяется крайне редко в практике геолого-разведочных работ. Основным показателем наличия гидратов в отложениях являются исследования керна, где гидраты либо видны при визуальном осмотре, либо определяются по замеру удельного газосодержания при оттаивании.

Устойчивость морского дна . Разложение гидратов может привести к нарушению устойчивости придонных отложений на континентальных склонах. Подошва ЗГТ может быть местом резкого снижения прочности толщи осадочных пород. Присутствие гидратов может препятствовать нормальному уплотнению и консолидации отложений. Поэтому свободный газ, удерживаемый ниже ЗГТ, может оказаться под повышенным давлением. Таким образом, любая из технологий разработки месторождений гидратов может оказаться успешной только в том случае, если будет исключено дополнительное снижение устойчивости пород. Пример осложнений, возникающих при разложении гидратов, можно найти у Атлантического побережья США. Здесь уклон морского дна составляет 5°, и при таком уклоне дно должна быть устойчиво. Однако наблюдается много подводных оползневых уступов. Глубина этих уступов близка к предельной глубине зоны стабильности гидратов. В районах, где происходили оползни, BSR менее отчетливы. Это может служить признаком того, что в настоящее время гидратов уже нет, так как они переместились. Существует гипотеза, согласно которой при снижении давления в СПТТ, как это должно было произойти при снижении уровня моря в ледниковый период, могло начаться разложение гидратов на глубине и, как следствие, сползание отложений, насыщенных гидратами

Такие районы были обнаружены у побережья Сев. Каролины, США. В зоне огромного подводного оползня шириной 66 км сейсмическими исследованиями было установлено наличие массивного СПТТ по обе стороны от оползневого уступа. Однако под самим уступом гидратов нет.

Подводные оползни, обусловленные наличием гидратов, могут повлиять на устойчивость морских платформ и трубопроводов.

Многие специалисты считают, что часто упоминаемые оценки количества метана в гидратах преувеличены. И даже если эти оценки верны, гидраты могут быть рассеяны в осадочных породах, а не сконцентрированы в виде крупных скоплений. В таком случае добывать их может быть сложно, экономически не выгодно и опасно для окружающей среды.

12. Методы добычи метана из гидратов

Газовые гидраты относят к группе нетрадиционных источников углеводородов, в которую входят метан из угольных пластов, углеводороды, содержащиеся в битуминозных песчаниках, и черные сланцы. Некоторые из этих источников (к числу которых не относятся гидраты) уже используются в промышленном масштабе. В большинстве случаев переход неиспользуемого нетрадиционного источника в разряд используемых зависит от размера инвестиций и уровня развития технологии.

Разработка технологий добычи метана из гидратов до последнего времени оставалась прерогативой газовой промышленности и происходила медленно. Сейчас рассматриваются три метода: это - снижение давления, нагрев и закачка ингибиторов гидратообразования. Первый метод предусматривает снижение давления до уровня, достаточного для разложения гидратов. Этот метод можно применить только там, где можно отбирать свободный газ из зоны, прилегающей к 3ГГ. При этом снижается пластовое давление в ЗГГ, как это происходило на Мессояхском месторождении.

Если под ЗГГ нет свободного газа, то подходящим решением может быть нагрев до температуры, при которой происходит разложение гидратов. Примерам реализации этого способа может быть закачка относительна теплой морской воды в газогидратный пласт на шельфе.

Закачка ингибиторов, таких как метанол, приводит к изменению значения равновесных параметров гидратов (повышение давления диссоциации, снижение температуры диссоциации). В результате гидраты разлагаются и выделяется метан.

Наиболее приемлемым методом с практической точки зрения является закачка теплой воды. Однако газовые гидраты могут считаться потенциальным источником углеводородов только в том случае, когда можно доказать, что полученная в результате энергия превосходит энергию, необходимую для выделения метана.

13. Другие возможности использования гидратов газов

Независимо от того, станут ли природные гидраты еще одним мировым источником топлива, накопленные знания о гидратах открывают другие возможности их использования. Исследователи Норвежского научно-технологического университета (NTNU1 в Тронхайме изучают возможность хранения и транспортирования природного газа в виде гидратов при атмосферном давлении. Проведенные в университете эксперименты показали, что образовавшиеся гидраты не разлагаются при атмосферном давлении, если они находятся при температуре -15градусов С или ниже. Этот факт позволяет наметить следующие технологии:

· Попутный газ с нефтяных месторождений можно перевести в гидратное состояние и транспортировать танкерами. Можно также смешивать измельченные гидраты с охлажденной нефтью и транспортировать в виде пульпы танкерами или по трубопроводам.

· Если нельзя использовать трубопроводы, то можно транспортировать замороженные гидраты на большие расстояния таким же образом, как сжиженный природный газ (СПГГ)

· Если требуется хранить газ, его можно перевести в гидратное состояние и хранить охлажденным при атмосферном давлении.

· Азот, углекислый газ и сероводород могут быть отделены от метана путем перевода его в гидратное состояние.

· Процесс гидратообразования можно использовать для опреснения воды и выделения из нее биологических материалов.

· Углекислый газ может быть извлечен из атмосферного воздуха и переведен в гидратное состояние для хранения и последующего захоронения в глубоководных зонах.

Чем больше стран будут отказываться от сжигания газа в факелах и чем больше добывающих компаний захотят найти альтернативу строительству трубопроводов, тем скорее будет развиваться технология перевода газа в гидратное состояние для транспортирования или захоронения.

Заключение

К природным газогидратам нефтяные компании пока интереса не проявляют. В то же время на рынке технологий в скором времени появится новый продукт, основанный на свойстве природного газа в определенных условиях образовывать твердые соединения (кстати, до сих пор это свойство приносило одни хлопоты и расходы, так как благодаря ему в газопроводах в зимнее время нередко возникают газогидратные пробки). К разработке этого продукта причастны сразу несколько крупных компаний, включая Газпром, Shell, Total, Arco, Phillips и другие. Речь идет о преобразовании природного газа в газогидраты, что обеспечивает его транспортировку без использования трубопровода и хранение в наземных хранилищах при нормальном давлении. Разработка этой технологии явилась побочным продуктом десятилетних исследований природных газогидратов в норвежских научных лабораториях. В последние два года эти исследования приняли форму коммерческого проекта, поддерживаемого совместно Научно-исследовательским Советом Норвегии и транснациональными нефтяными компаниями.

Рассмотрение газовых гидратов в качестве источника энергии, безусловно, очень важное достижение для энергетической отрасли. С ежегодным ростом потребления углеводородного сырья будет повышаться и интерес к нетрадиционным источникам топлива. И нас ждет огромное количество открытий, связанных с газовыми гидратами

Список литературы

1. Макогон Ю.Ф. «Гидраты природных газов», Недра, 2008г.

2. Баженова О.К., Бурлин Ю.К. «Геология и геохимия нефти и газа», МГУ 2007г.

3. Черников К.А. и др. Словарь по геологии нефти и газа, Недра, 1988

4. Collet TS and Kuushraa VA: «Hydrates Сontain Vast Store of World Gas Resources», Oil Gas Journal 96, № 19 (May 11, 1998): 90-95.

5. Трофимчук А.А., Черский Н.В., Царев В.П. Гидраты - новый источник углеводородов// Природа - 2010г. №3.

6. Была использована информация с сайта: geo.web.ru

Размещено на Allbest.ru

Подобные документы

    Геологическое описание месторождения: географическое положение, тектоника и характеристика ловушки. Краткий анализ разработки газовой залежи. Общие сведения о гидратах, условия их образования. Предупреждение образования гидратов природных газов.

    курсовая работа , добавлен 03.07.2011

    Геологическая характеристика сеноманской залежи Ямбургского месторождения: тектоника, литолого-стратиграфические показатели разреза. Особенности исходного сырья и изготовляемой продукции. Предупреждение образования гидратов природных газов, борьба с ними.

    курсовая работа , добавлен 26.06.2011

    Основные свойства компонентов природных газов в стандартных условиях. Газы газогидратных залежей. Газовые смеси и их характеристики. Критические значения давления и температуры. Плотность газа. Коэффициент сверхсжимаемости. Состояние идеальных газов.

    контрольная работа , добавлен 04.01.2009

    Общие сведения о газогидратах: строение, структура. Кинетика образования и разложения газовых гидратов. Наличие газогидратов в поровом пространстве пород. Особенности распределения температуры в газогидратном пласте при различных значениях давления среды.

    курсовая работа , добавлен 07.12.2011

    Физико-химические свойства пластовых жидкостей и газов. Состояние борьбы с потерями на объектах нефтяной отрасли и оценка их величины. Источники потерь углеводородов и предложения по их уменьшению. Мероприятия по охране окружающей среды и труда.

    курсовая работа , добавлен 28.11.2010

    Способы разрушения нефтяных эмульсий. Обезвоживание и обессоливание нефти. Электрические методы разрушения водонефтяных эмульсий. Способы очистки нефти от механических и агрессивных примесей. Гидраты природных газов. Стабилизация, дегазация нефти.

    реферат , добавлен 12.12.2011

    Анализ международного опыта по использованию шахтного метана. Особенности внедрения оборудования по утилизации шахтного метана на примере сепаратора СВЦ-7. Оценка экономической целесообразности применения мембранной технологии при разделении газов.

    дипломная работа , добавлен 07.09.2010

    Понятие природного газа и его состав. Построение всех видов залежей нефти и газа в ловушках различных типов. Физические свойства природных газов. Сущность ретроградной конденсации. Технологические преимущества природного газа как промышленного топлива.

    контрольная работа , добавлен 05.06.2013

    История освоения месторождения. Геологическое строение, характеристика продуктивных пластов, свойства пластовых жидкостей и газов. Запасы нефти по Ем-Еговской площади. Принципы разработки нефтяных залежей. Мероприятия по борьбе с парафиноотложением.

    курсовая работа , добавлен 10.04.2013

    Основы увеличения нефте- и газоотдачи пластов. Физические и механические свойства горных пород нефтяных и газовых коллекторов. Методы анализа пластовых жидкостей, газов и газоконденсатных смесей. Характеристика природных коллекторов нефти и газа.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «naruhog.ru» — Советы по чистоте. Стирка, глажка, уборка