Газогидраты перспективы разработки. Состав и свойства газовых гидратов


Нефтегазовые перспективы России в XXI веке связаны с освоением шельфа ее арктических морей, где по оценкам различных специалистов залегает свыше 100 млрд тонн углеводородов в нефтяном эквиваленте.

По мнению cпециалистов ОАО «НК «Роснефть», на арктическом шельфе сосредоточено до 80% всех потенциальных углеводородных ресурсов России. При этом наиболее изученной является территория Западной Арктики - шельфы Баренцева, Печорского и Карского морей. Так, по данным Минприроды РФ, начальные извлекаемые ресурсы углеводородов в этом регионе составляют 62 млрд т. Необходимо отметить, что большинство из 13 открытых в западной части Арктики углеводородных месторождений относятся к крупным, а некоторые - даже к уникальным объектам. Остальной российский Север в геологическом отношении еще мало изучен. Тем не менее было установлено, что начальные извлекаемые углеводородные ресурсы моря Лаптевых составляют 3,7 млрд т. у. т. (тонн условного топлива), Восточно-Сибирского моря - 5,6 млрд т. у. т. и Чукотского моря - 3,3 млрд т. у. т. Но есть и нетрадиционные, к тому же - неконвенционные, то есть не подлежащие обязательному согласованию с другими странами при их разработке, углеводороды - газовые гидраты. По различным экспертным оценкам, в газогидратных залежах содержится примерно 20 000–21 000 трлн м3 метана. Поисково-оценочные и исследовательские работы по аквальной газогидратной тематике в настоящее время ведут Россия, Норвегия, США, Канада, Германия, Нидерланды, Япония, Китай, Индия и даже Южная Корея.

Газогидраты Арктики - гигантский углеводородный ресурс России


Газовые гидраты являются единственным пока всё еще не разрабатываемым в промышленных масштабах, но весьма перспективным источником природного газа на Земле. Они могут составить реальную конкуренцию традиционным углеводородам: в силу наличия огромных ресурсов, широкого распространения на планете, неглубокого залегания и весьма концентрированного состояния (1 м3 природного метаногидрата содержит около 164 м3 метана в газовой фазе и 0,87 м3 воды).
Так, Южная Корея уже планирует начать бурение для опытно-промышленной добычи метана из залежей газовых гидратов шельфа в Японском море. Свое первое месторождение газовых гидратов в Японском море (с мощностью газоносного пласта 130 м) корейцы обнаружили в 135 км к северо-востоку от южнокорейского порта Пхохан.
Большинство природных газов (CH4, C2H6, C3H8, CO2, N2, H2S, изобутан и т. п.) образуют гидраты или клатраты - кристаллические структуры, в которых газ находится в окружении молекул воды (рис. 1), удерживаемых вместе низкой температурой и высоким давлением окружающей водной среды.

Залежи аквальных гидратов метана образуются в пределах верхних 1,5 км отложений морского дна (при этом эшелон глубины 200–800 метров ниже уровня морского дна рассматривается как наиболее перспективный для их промышленной разработки).
Мощность залежи аквальных газогидратов зависит от глубины акватории и температуры ее придонных вод и колеблется от 100 м до 300-350 м (в северных морях на глубинах шельфа около 1000 м).
Арктический шельф Северного Ледовитого океана занимает особое место в ряду других акваторий Земли из-за наличия довольно обширной субмаринной криолитозоны, с которой и связано образование многочисленных залежей газогидратов. На представленном фрагменте карты явно показано, что зоны возможной газогидратоносности российского шельфа весьма обширны и, по-видимому, могут рассматриваться в качестве весьма важных источников углеводородов в будущем (рис. 3).
Термобарические условия существования аквальных газогидратов характерны для большей части дна Мирового океана с глубинами более 300–400 м. На арктическом шельфе зона стабильности газовых гидратов связана с наличием субмаринной криолитозоны и поэтому может существовать при несколько меньшей глубине (если подошва криолитозоны расположена на глубине более 260 м от уровня моря). В частности, низкотемпературные потенциально гидратоносные осадки занимают центральную, северо- и юго-восточную части Баренцева моря, примыкающие к Новой Земле (рис. 3).
В ходе проведенных Россией многочисленных экспедиционных исследований были получены количественные данные и показатели, характеризующие зону стабильности залежей газогидратов на дне Северного Ледовитого океана (таблица).
Результаты подобных исследований в совокупности с их научной интерполяцией и экспертными оценками позволили рассчитать объемы потенциальных ресурсов метана в имеющихся газогидратных залежах основных геоморфологических структур дна Северного Ледовитого океана.
Приведенные цифры не являются окончательными, так как сейчас осуществляется работа по уточнению шельфовых областей (вопрос о современном разделе арктического шельфа рассматривается Комиссией ООН по границам континентального шельфа на основании положений Конвенции ООН по морскому праву) и Россия претендует на территорию Арктики общей площадью 1,2 млн км2, что может привести к дальнейшему росту потенциальных объемов газогидратов.

Геоэкологические риски и экономические аспекты газогидратных разработок

Разработка газогидратов на шельфе влечет за собой экологическую угрозу, связанную с глобальным потеплением. В частности, уже сейчас вечная мерзлота в Западной Сибири оттаивает на 4 см в год, а в ближайшие 20 лет ее граница сдвинется на север примерно на 80 км. Похожая ситуация и с таянием льдов в Арктике. Так, если в 1979 году площадь арктических льдов составляла 7,2 млн км2, то уже в 2007 году она сократилась до 4,3 млн км2. К тому же толщина ледяного покрова здесь за этот период уменьшилась примерно вдвое. Заметно теплеет и вода морей и океанов (даже на глубине до 2000 м). А газовые гидраты устойчивы только при низкой температуре и повышенном давлении (рис. 5).
В результате, во-первых, мы можем потерять столь ценный углеводородный природный ресурс, а во-вторых, при разложении аквальных газогидратов за счет повышения температуры даже на несколько градусов выделяемый метан попадет в атмосферу Земли, где его концентрация удвоится и существенно усилит парниковый эффект.
Следует также отметить, что быстротечное разрушение газогидратных залежей может привести к образованию волн-цунами, способных нанести серьезный ущерб прибрежным территориям. Гигантские воронки в Ямало-Ненецком автономном округе в 2012 и 2013 годах образовались из-за выброса газогидратов, вызванного прогревом земной поверхности.
Освоение (разработка) выявленных к настоящему времени значительных объемов природных газогидратов и аквальных залежей, содержащих около 15 000×1012 м3 СН4, сдерживается их довольно неустойчивым состоянием, обусловливающим возможное быстротечное (взрывное) разрушение их массивов. В ходе подобного саморазрушения газогидратов объем возникающего газа увеличивается в 160–180 раз, что существенно осложняет и даже препятствует применению известных промышленных технологий их разработки.
Себестоимость добычи газа из газогидратных залежей зависит от ряда факторов: в первую очередь от геологических условий и применяемой технологии. Необходимо сразу отметить, что ограниченное число как реализованных проектов добычи метана из газогидратных залежей, так и экономических расчетов подобных проектов затрудняет выработку обоснованной оценки их средней себестоимости.
Так, выполненная в 2008 году оценка добычи метана из газогидратной залежи Маллик в канадской Арктике показала, что совокупные капитальные и операционные издержки подобной разработки варьируют в пределах 195–230 долл./тыс. м3 для газогидратов, расположенных над свободным газом, и в пределах 250–365 долл./тыс. м3 - для газогидратов, расположенных над морским дном. Особо была отмечена необходимость наличия соответствующей инфраструктуры для транспортировки добытого газа.
Японские разработчики оценивают себестоимость добычи метана из поддонных газогидратов на уровне 540 долл./тыс. м3, в то время как по оценкам ИНЭИ РАН и Аналитического центра, данная технология становится конкурентоспособной только при затратах на добычу метана менее 390 долл./тыс. м3. По расчетам МЭА, оценочная себестоимость промышленной разработки месторождений газогидратов может составить 175–350 долл./тыс. м3, что всё равно делает их наиболее дорогостоящим из известных способов добычи природного газа.

Сферические наночастицы как агенты активирования газогидратов

В настоящее время существенное снижение себестоимости производимой продукции возможно прежде всего на основе
использования достижений в области нанотехнологий, что объясняется наличием принципиально новых свойств и характеристик у веществ наноуровня. Экспериментально было установлено, что основным структурным элементом газовых гидратов являются кристаллические ячейки - элементы, обладающие наноразмерностью, состоящие из молекул воды, внутри которых и размещены молекулы газа. При этом структура гидратов подобна структуре льда, но отличается от последней тем, что молекулы газа расположены внутри кристаллических решеток, а не между ними.
Очевидно, что для разрушения подобной газогидратной ячейки с целью высвобождения метана более эффективным является использование различных наночастиц, соразмерных с ячейкой.
Необходимо отметить, что длины связей в кристаллических решетках газогидратов и углы между ними практически одинаковы и равны 2,76° и 109,5°.
В соответствии с разработками профессора А.Е. Воробьева первоначально предполагалось подавать и использовать наночастицы практически любой формы. При этом главным фактором являлась их масштабная соразмерность с разрушаемыми ячейками клатратов - газовых гидратов.
В дальнейшем была установлена явно выраженная зависимость эффективности разрушения газогидратов от формы наночастиц: в частности, от наличия у сферических наночастиц различных шипов (рис. 6), размещенных равномерно по всей их поверхности.
Для эффективного обеспечения процесса разрушения ячейки клатрата с включенной в нее молекулой метана важными также представляются оптимальные параметры (длина, расстояние между ними и др.) и форма (прямолинейная, изогнутая, утолщенная и т. д.) шипов сферической наночастицы.
Такие наноструктуры, которые выглядят как природные биологические объекты - морские ежи (рис. 8), довольно легко формируются электрохимическим методом. В настоящее время основным материалом для их строительства является полистирол.
Микросфера полистирола представляет собой основу, на которой оксид цинка образует трехмерную поверхность. В результате получаются полые, сферической формы наноструктуры с торчащими во все стороны шипами. В настоящее время себестоимость производства 10 кг подобных наночастиц составляет 50 долл. США.
При разработке обеспечивается постепенное разрушение верхнего слоя скоплений газовых гидратов гидродинамической струей морской воды, предварительно насыщенной сферическими наночастицами. При перемещении сферической частицы вдоль поверхности кристаллической ячейки газогидратов происходит ее разрушение и высвобождение молекулы метана (рис. 7). Таким образом образуется раствор метана и его гомологов, извлечение которого на поверхность осуществляют вначале принудительно, а затем за счет эффекта газлифта.
Однако в процессе обработки аквальной газогидратной залежи такие частицы могут разлетаться в разные стороны и впоследствии теряться. Для сбора им придают магнитные, т. е. выполняют целиком из магнитных материалов, что существенно удорожает их себестоимость, или помещают в них магнитные материалы.
Кроме того, подачу «магнитизированной» воды в трубы осуществляют также при помощи погружного оборудования. Сбор образующейся водно-газовой смеси осуществляют посредством колокола (рис. 9). Откачку образующейся водно-газовой смеси газовых гидратов осуществляют через систему труб, соединенных с баком-хранилищем, установленным на береговой поверхности, плавучей платформе или судне.
Для этого подают воду, насыщенную сферическими наночастицами, равномерно по поверхности залежи газогидратов, через гидранты-форсунки. В результате во внутреннем пространстве колокола образуются осколки газовых гидратов, газ и раствор метана в воде.
Через систему труб для откачки образующаяся водно-газовая смесь поступает вверх самостоятельно (эффект аэролифта) и направляется в специальный бак-хранилище, откуда по трубопроводу поступает к месту назначения. Магнитные наночастицы собираются посредством электромагнита (на схеме не показан) и снова используются.

Перспективы использования РЗМ в нанотехнологиях освоения газогидратных залежей

Большое будущее в технологиях освоения газогидратов имеют нанокомпозиты, которые содержат смесь наночастиц неодима с наночастицами железа. Результатом взаимодействия таких наноструктурированных фрагментов магнита становится усиление его магнитных свойств по сравнению с обычными магнитными сплавами.
Улучшение магнитных свойств в указанных нанокомпозитах обусловлено свойством, называемым обменной связью (синергетическим взаимодействием). Упрощая сложный физический процесс, можно сказать, что связь между отдельными наночастицами в образуемом композите приводит к появлению магнитных свойств более сильных, чем сумма свойств отдельных его компонентов.
Кроме того, в ходе проведенных нами исследований было установлено несколько довольно существенных аспектов, определяющих эффективность промышленного применения подобных нанотехнологий при разработке залежей газогидратов.
Во-первых, полученная в составе гидродинамической струи потенциальная энергия рабочего инструмента - наночастицы - обеспечивает ее перемещение по поверхности газогидратов только на весьма короткое расстояние, так как зачастую наблюдается ее рикошет, с потерей потенциальной энергии разрушения клатратных связей и изменением траектории перемещения, от поверхности газогидратной залежи. И, следовательно, практически каждая из них осуществляет разрушение довольно небольшого количества ячеек - клатратов, хаотической последовательности.
Поэтому, кроме шарообразных наночастиц, в качестве рабочего инструмента, разрушающего гидратные залежи, более целесообразно применять различные молекулярные шестерни (рис. 11) и соединенные осью колеса. Модели подобных наноустройств были предложены K.E. Drexler и R. Merkle из IMM (Institute for Molecular Manufacturing, Palo Alto).
Валами «шестеренок» в подобной «коробке передач» являются углеродные нанотрубки, а «зубцами» служат молекулы бензола. При этом характерные частоты вращения шестеренок составляют несколько десятков гигагерц.
Механизм образования подобных наноколес уже детально обоснован (рис. 12). Так, группой исследователей под руководством А. Мюллера (Achim Müller) из Университета Билефельд (Германия) было обнаружено, что смешение молибдата натрия, воды и восстановителя при низком значении рН приводит к самопроизвольному образованию бубликоподобных наноколес, состоящих из оксида молибдена. Диаметр формирующихся молибденсодержащих колес составляет около 4 нм.
Необходимо отметить, что для разрушения ячеек газогидратов наночастицами может быть использована не только энергия гидродинамического потока. В частности, одним из важных и перспективных направлений применения нанотехнологий в нефтяной и газовой промышленности является создание специальных миниатюрных устройств, оснащенных микропроцессорами и способных выполнять целенаправленные операции с объектами нанометровых масштабов, называемых «нанороботами».
Нанороботы (в англоязычной литературе также используются термины «наноботы», «наноиды», «наниты») - это наномашины, созданные из различных наноматериалов и размером сопоставимые с молекулой. Они должны обладать функциями движения, обработки и передачи информации, а также исполнения специальных программ. Размеры нанороботов не превышают нескольких нанометров.
Согласно современным теориям, нанороботы должны уметь осуществлять двустороннюю коммуникацию - реагировать на различные сигналы и быть в состоянии подзаряжаться или перепрограммироваться извне посредством звуковых или электрических колебаний. Также важными представляются их функции репликации - самосборки новых нанитов и программированного самоуничтожения, например, по окончании работы. В этом случае роботы должны распадаться на экологически безвредные и быстровыводимые компоненты.
При этом существуют различные подходы к разработке нанороботов: одним из них является создание самоходных микро- и наноразмерных актюаторов (наномоторов). Наномотор представляет собой молекулярное устройство, способное преобразовывать различные виды энергии в движение. В типичном случае он может создавать силу порядка одного пиконьютона.
В качестве энергии движения наномоторов могут выступать различные химические реакции, энергия света, звука (механических колебаний), электромагнитное поле и электрический ток.
Так, в Калифорнийском университете были проведены лабораторные эксперименты по перемещению нанотрубок посредством диэлектрофореза в водных растворах. При этом промежуток между электродами-нанотрубками составлял 10 нм, а подаваемое на них напряжение - 1 В. В результате на концах таких электродов образовывалось довольно сильное неоднородное электростатическое поле, притягивающее подобные частицы.
Нанотрубки-электроды образуют статор, а наночастицы в центре - ротор. Если на электроды подавать переменное напряжение, то наночастица будет вращаться, причем ее положение напрямую зависит от величины напряжения, подводимого к электродам.
Кроме этого, M.P. Hughes из School of Engineering, University of Surrey предложил модель асинхронного электродинамического наномотора, который обладает вращающим моментом благодаря вращающемуся электромагнитному полю.
Подобное взаимодействие «вращающееся поле - электрический диполь (ротор)» значительно стабилизирует положение ротора. Электрическое поле генерируется благодаря прямоугольным импульсам, посылаемым на статор, что дает возможность прямого компьютерного управления таким наномотором. Также возможно прецизионное управление и частотой вращения такого ротора. Разработанный наномотор состоит из ротора длиной 1 мкм и диаметром 100 нм. Такой наномотор развивает момент усилия в 10–15 Н/м.
Подобные нанотехнологии обеспечивают эффективную и последовательную проработку всей поверхности аквальной залежи газогидратов с необходимой скоростью их разрушения и получения запланированных объемов метана.
В перспективе новые технологии получения горючего природного газа из газогидратов повысят мировой спрос на некоторые виды редких и редкоземельных металлов (РЗМ). В силу имеющихся в России запасов и ресурсов РЗМ возможное экономичное производство таких металлов усилит позиции России и ее производителей на мировом рынке. В частности, гольмий -идеальный парамагнетик. И подобные магнитные свойства проявляет большинство редкоземельных элементов. Магнитные свойства ставят гадолиний в один ряд с железом, кобальтом и никелем. В то время как лантан и другие лантаноиды парамагнитны, гадолиний - ферромагнетик, причем даже более сильный, чем никель и кобальт.
Ресурсный потенциал РЗМ в России достаточен для обеспечения как внутренних потребностей промышленного развития в перспективе на 2020–2030 годы и далее, так и организации их экспорта в виде конечной химико-металлургической продукции и изделий. Дело за технологической реализацией этого потенциала путем технической модернизации ОАО «Ловозерский ГОК» и «Соликамский МЗ», промышленного освоения Томторского месторождения как мирового железорудно-алюмофосфатно-редкометального супергиганта, обогащенного иттриевыми ланданидами и скандием, и, наконец, организации разработки наиболее востребованных различных источников иттриевоземельных лантаноидов средне-тяжелой группы и иттрия (эвдиалитовых и др. руд). С этих позиций вышеизложенный материал ориентирует на организацию НИР и НИОКР по применению РЗМ в различных технологических направлениях освоения полезных ископаемых арктического побережья и шельфа, включая нанотехнологию применительно к газогидратным ресурсам. Здесь у нашей страны очевидные перспективы опережения не только «состояния умов», но и высокотехнологичных решений. Академик Н.П. Лаверов считает освоение Арктики более сложным, чем космоса. Следовательно, решение технологических проблем ее освоения требует объединения возможностей академической, вузовской и отраслевой науки при условии необходимой поддержки целевых научных исследований со стороны государства и бизнеса.
Новые задачи встают перед российскими научными организациями и техническими университетами. Так, известный специалист по редкоземельным металлам Л.П. Рихванов, профессор кафедры геоэкологии и геохимии ТПУ (г. Томск), считает, что «нужна специальная подготовка магистерских программ узкой направленности. Поскольку по геохимии редкие земли и урановые месторождения различаются, то опыта лишь урановых специалистов будет недостаточно». Эта точка зрения находит поддержку, в частности, в столичном МГРИ-РГГРУ, являющимся старейшим в России вузом, готовящим геологов, геофизиков и горных инженеров. При численности этого вуза около пяти тысяч человек в настоящее время в нем учится 120 аспирантов. В числе научных школ МГРИ-РГГРУ - урановая и редкоземельная. Многие годы МГРИ работал по заданиям Минсредмаша СССР. В соответствии с заданием Минобрнауки РФ № 26.2510.2014 К от 17 июля 2014 года, МГРИ-РГГРУ начал работать по трехгодичной НИР «Разработка рекомендаций по развитию минерально-сырьевой и производственной базы редкоземельных полезных ископаемых России с учетом мировых тенденций». Руководитель проекта - Е.А. Козловский, доктор технических наук, профессор, вице-президент РАЕН, бывший министр геологии СССР.
С изложенных позиций своевременность организации и развития поисково-исследовательских работ на газогидраты в России, несмотря на обеспеченность запасами и ресурсами нефти и газа на десятки лет, приобретает перспективное стратегическое значение. Тем более что кроме прибрежной зоны арктических морей определенные перспективы выявления крупных месторождений газогидратов в России связаны на юге с Черным (30–50 трлн т) и на Дальнем Востоке - с Охотским (>17 трлн т) морями. Ресурсы газа в гидратах континентальной и шельфовой части России оцениваются в 100–1000 трлн м3. Следовательно, перспективу получения природного газа из нетрадиционных месторождений газогидратов, так же как из сланцевого углеводородного сырья, необходимо квалифицировать как «прорывную инновационную технологию» в освоении недр Арктики и других регионов газовой промышленностью России.


Воробьев Александр Егорович
доктор технических наук, профессор, заведующий кафедрой Нефтепромысловой геологии, горного и нефтегазового дела Российского университета дружбы народов, директор НОЦ «Инновации в горном и нефтегазовом комплексе» при РУДН и НОЦ «Национальной минеральносырьевой безопасности стран Центральной Азии» (КРСУ, г. Бишкек, Кыргызстан), профессор Грозненского государственного нефтяного института, директор аспирантуры РУДН по направлению «Геология, разведка и разработка полезных ископаемых»

А.Е. ВОРОБЬЕВ, В.И. ЛИСОВ, Г.Б. МЕЛЕНТЬЕВ
Российский университет дружбы народов

Национальный минерально-сырьевой университет Горный

Научный руководитель: Гульков Юрий Владимирович, кандидат технических наук, Национальный минерально-сырьевой университет Горный

Аннотация:

В данной статье рассматриваются химические и физические свойства газовых гидратов, история их изучения и исследования. Кроем того, рассматриваются основные проблемы, препятствующие организации коммерческой добычи газовых гидратов.

In this article we describes chemical and physical characteristics of gas hydrates, the history of their study and research. In addition, the basic problems hindering the organization of commercial production of gas hydrates аре considered.

Ключевые слова:

газогидраты; энергетика; коммерческая добыча; проблемы.

gas hydrates; power engineering; commercial extraction; рroblems.

УДК 622.324

Введение

Первоначально человек использовал собственные силы как источник энергии. Через некоторое время на помощь пришли энергия дерева и органики. Около века назад основным энергоресурсом стал уголь, через 30 лет его первенство разделила нефть. Сегодня энергетика мира зиждется на триаде газ-нефть-уголь. Однако, в 2013 году это равновесие было смещено с в сторону газа японскими энергетиками. Япония- мировой лидер импорта газа. Государственная корпорация нефти, газа и металлов (JOGMEC) (Japan Oil, Gas & Metals National Corp.) сумела первой в мире получить газ из гидрата метана на дне Тихого океана с глубины 1,3 километра . Пробная добыча длилась всего 6 недель, не смотря на то, что в плане рассматривалась двухнедельная добыча, было добыто 120 тыс куб м природного газа Это открытие позволит стране стать независимой от импорта, в корне изменить свою экономику. Что такое газогидрат и как он может повлиять на мировую энергетику?

Целью данной статьи является рассмотрение проблем в освоении газогидратов.

Для этого были поставлены следующие задачи:

  • Изучить историю исследования газогидратов
  • Изучить химические и физические свойства
  • Рассмотреть основные проблемы освоения

Актуальность

Традиционные ресурсы распределены по Земле не равномерно, кроме того, они ограничены. По современным оценкам запасов нефти по сегодняшним меркам потребления хватит на 40 лет, энергоресурсов природного газа- на 60-100. Мировые же запасы сланцевого газа оцениваются примерно в 2 500-20 000 трлн. куб. м. Это энергетический резерв человечества более чем на тысячу лет Коммерческая добыча гидратов подняла бы мировую энергетику на качественно новый уровень. Другими словами, изучение газогидратов открыло перед человечеством альтернативный источник энергии. Но существует и ряд серьезных препятствий их изучению и коммерческой добычи.

Историческая справка

Возможность существования газогидратов была предсказала Стрижовым И.Н., но он говорил о нецелесообразности их добычи. Гидрат метана в лаборатории впервые получил Виллар в 1888 году, вместе с гидратами других легких углеводородов. Первоначальные столкновения с газогидратами, рассматривались как проблемы и помехи в добыче энергии. В первой половине XX века было установлено, что газогидраты являются причиной пробкообразования в газопроводах, расположенных в арктических районах (при температуре выше 0 °С). В 1961г. было зарегистрировано открытие Васильева В.Г., Макагона Ю.Ф., ТребинаФ.А., Трофимука А.А., Черского Н.В. «Свойство природных газов находиться в твердом состоянии вземной коре» , возвестившее о новом природном источнике углеводородов- газогидрате. После этого заговорили об исчерпаемости традиционных ресурсов громче, и уже через 10 лет было обнаружено первое месторождения газогидратов в январе 1970 в Заполярье, на границе Западной Сибири, оно носит название Мессояхское. Далее были проведены крупные экспедиции ученых как СССР, так и многих других стран.

Слово химии и физики

Газогидраты - это молекулы газа, облепленные вокруг молекулами воды, словно «газ в клетке». Это называется водный клатратный каркас. Представьте, что летом вы поймали бабочку в ладони, бабочка- это газ, ваши ладони-молекулы воды. Т.к вы охраняете бабочку от внешних воздействий, но она сохранит свою красоту и индивидуальность. Так и газ ведет себя в клатратном каркасе.

В зависимости от условий образования и состояния гидратообразователя внешне гидраты выглядят в виде четко выраженных прозрачных кристаллов разнообразной формы или представляют собой аморфную массу плотно спрессованного «снега».

Гидраты залегают при определенных термобарических условиях- фазовое равновесие. При атмосферном давлении газовые гидраты природных газов существуют вплоть до 20-25 °C. Благодаря своей структуре единичный объём газового гидрата может содержать до 160—180 объёмов чистого газа. Плотность гидрата метана около 900 кг/м³, что ниже плотности воды и льда. При нарушении фазового равновесия: повышении температуры и/ или уменьшении давления гидрат разлагается на газ и воду с поглощением большого количества теплоты. Кристаллогидраты обладают высоким электрическим сопротивлением, хорошо проводят звук, и практически непроницаемы для свободных молекул воды и газа, обладают низкой теплопроводностью.

Разработка

Газогидраты труднодоступны,т.к. к настоящему времени установлено, что около 98% залежей газогидратов сосредоточены на шельфе и континентальном склоне океана, на глубинах воды более 200 - 700 м, и только всего 2% - в приполярных частях материков. Поэтому, проблемы в освоении коммерческой добычи газовых гидратов встречаются уже на этапе разработки их месторождений.

На сегодняшний день существует несколько методов обнаружения залежей газовых гидратов: сейсмическое зондирование, гравиметрический метод, измерение теплового и диффузного потоков над залежью, изучение динамики электромагнитного поля в исследуемом регионе и др.

При сейсмическом зондировании используются данные двухмерной (2-D) сейсморазведки при наличии свободного газа под гидратонасыщенным пластом определяется нижнее положение гидратонасыщенных пород. Но при сейсморазведке нельзя обнаружить качество залежи, степень гидратонасыщенности пород. Кроме того, сейсморазведка не применима на сложных рельефах.Но она выгодна более всех с экономической стороны, однако, лучше ее использовать в дополнении с другими методами.

Например, пробелы можно заполнить применив в дополнении с сейсморазведке электромагнитную разведку. Она позволит более точно охарактеризовать породу, благодаря индивидуальным сопротивлениям в точках залегания газогидратов. Министерство энергетики США планирует проводить ее с 2015 года. Сейсмоэлектромагнитный способ применялся для разработки Черноморских месторождений.

Также рентабельно разрабатывать месторождение насыщенных залежей комбинированным методом разработки, когда процесс разложения гидратов сопровождается снижением давления с одновременным тепловым воздействием. Понижение давления позволит сэкономить тепловую энергию, затрачиваемую на диссоциацию гидратов, а прогрев поровой среды будет препятствовать повторному образованию газогидратов в призабойной зоне пласта.

Добыча

Следующим камнем преткновения является непосредственно добыча гидратов. Гидраты залегают в твердой форме, что вызывает трудности. Так как газогидрат залегает в определенных термобарических условиях, то при нарушении одного из них он будет разлагаться на газ и воду, в соответствии с этим были разработаны следующие технологии извлечения гидратов.

1. Разгерметизация:

Выводы гидрат из фазового равновесия он разложится на газ и воду. Эта технология славится своей тривиальностью и экономической целесообразностью, кроме того на ее плечи ложится успех первой добычи японцев 2013 года. Но не все так радужно: образовавшаяся вода при низких температурах может закупорить оборудование. Кроем того, технология действительно эффективна, т.к. при проведении пробной добычи метана на месторождении Маллик за 5,5 дней было добыто 13 000 куб. м газа, что во много раз превышает показатели добычи на этом же месторождении по технологии нагревания — 470 куб. м газа за 5 дней. (см. таблица)

2. Нагревание:

Снова нужно разложить гидрат на газ и воду но уже по средствам подведения тепла. Подвод тепла может осуществляться разными способами: впрыскивание теплоносителя, циркуляция горячей воды, нагрев паром, нагрев электричеством. Хотелось бы остановиться на интересной технологии придуманий исследователями из Дортмундского университета. Проект предполагает прокладку трубопровода до залежей газогидратов на морском дне. Особенность его в том, что у трубы двойные стенки. По внутренней трубе к месторождению подается морская вода, нагретая до 30-40˚С, температуры фазового перехода, и пузырьки газообразного метана вместе с водой поднимаются по внешней трубе наверх. Там метан отделяется от воды, отправляется в цистерны или в магистральный трубопровод, а теплая вода возвращается вниз, к залежам газогидратов. Однако, этот метод добычи требует высоких затрат, постоянного увеличения подводимого количества теплоты. При этом газогидрат разлагается медленнее.

3. Введение ингибитора:

Также для разложения гидрата использую ввод ингибитора. В Институте Физики и Технологии Университета Бергена в качестве ингибитора рассмотрели углекислый газ. С помощью этой технологии можно получить метан без непосредственной добыче самих гидратов. Этот метод уже тестируется Японской Национальной Корпорацией Нефти, Газа и Металлов (JOGMEC) при поддержке Американского Департамента Энергетики. Но эта технология таит в себе экологическую опасность, требует высоких затрат. Реакции при этом протекает медленнее.

Название проекта

Дата

Страны-участницы

Компании

Технология

Маллик, Канада

Япония, Канала США, Германия, Индия

JOGMEC, BP, Chevron Texaco

Нагреватель (теплоноситель-вода)

Северный склон Аляски, США

США, Япония

Conoco Phillips, JOGMEC

Инъекция углекислого газа, ввод ингибитора

Аляска, США

BP, Schlumberger

Бурение с целью изучения свойств газогидрата

Маллик, Канада

Япония, Канада

JOGMEC в составе частного государственного консорциума

Разгерметизация

Огонь во льду (Ignik Sikumi ),

Аляска, США

США, Япония, Норвегия

Conoco Phillips, JOGMEС, университет Бергена (Норвегия)

Инъекция углекислого газа

Совместный проект (Joint Industry Project ) Мексиканский залив, США

Chevron как лидер консорциума

Бурение с целью изучения геологии залегания газогидратов

Вблизи полуострова Ацуми, Япония

JOGMEC, JAPEX, Japan Drilling

Разгерметизация

Источник - аналитический центр по материалам открытых источников

Технологии

Еще одной причиной неосвоенности коммерческой добычи гидратов -отсутствие технология для их выгодной добычи, что провоцирует большие капиталовложения. В зависимости от технологии, встречаются разные барьеры: эксплуатация специального оборудования для введения химических элементов и/или локального нагрева для избегания повторного образования газогидратов и закупоривания скважин; применения технологий, препятствующих добыче песка.

Например, в 2008 году по предварительным оценкам для месторождения Маллик в канадской Арктике указывали на то, что издержки разработки варьируются в пределах 195-230 долл./тыс. куб. м для газогидратов, расположенных над свободным газом, и в пределах 250- 365 долл./тыс. куб. м для газогидратов, расположенных над свободной водой.

Для решения этой проблем необходимо популяризовать коммерческую добычу гидратов среди научных кадров. Организовывать больше научных конференций, конкурсов для усовершенствования старого либо создания нового оборудования, что могло бы обеспечить меньше издержки.

Экологическая опасность

Более того, разработка газогидратных месторождений неизбежно приведет к увеличению объемов выброса природного газа в атмосферу и, как следствие, к усилению парникового эффекта. Метан является мощным парниковым газом и, несмотря на то, что его время жизни в атмосфере меньше, чем у СО₂, потепление, вызванное выбросами в атмосферу больших количеств метана, будет в десятки раз быстрее, чем потепление, вызванное углекислым газом. Кроме этого, если глобальное потепление, парниковый эффект или по другим причинам будет вызван распад хотя бы одного месторождения газогидратов, то это вызовет колоссальный выброс метана в атмосферу. И, словно лавина, от одного залегания до другого, это приведет к глобальным изменения климата на Земле, а последствия этих изменений даже приблизительно предсказать нельзя.

Во избежание этого необходима интеграция данных комплексных анализов разведки, прогнозирование возможных поведения залежей.

Детонация

Еще одной нерешенной задачей для добытчиков становится весьма неприятное свойство газогидратов «детонировать» при самых незначительных сотрясениях. При этом кристаллы быстро проходят фазу трансформации в газообразное состояние, и обретают объем в несколько десятков раз превышающий исходный. Поэтому в сообщениях японских геологов очень аккуратно говорится о перспективе разработки метангидратов - ведь катастрофа буровой платформы Deepwater Horizon, по мнению ряда ученых, включая профессора Калифорнийского университета в Беркли Роберта Би, стала следствием взрыва гигантского пузыря метана, который образовался из потревоженных буровиками донных залежей гидратов.

Добыча нефти и газа

Газогидраты рассматриваются не только со стороны энергетического ресурса, чаще с ними сталкиваются при добычи нефти. И снова мы обратимся к гибели платформы Deepwater Horizon в Мексиканском заливе. Тогда для контроля над вырывающейся нефтью соорудили специальный короб, который планировали поставить над аварийным устьем скважины. Но нефть оказалась весьма газированной, и метан стал образовывать на стенках короба целые наледи газогидратов. Они примерно на 10% легче воды, и когда количество газогидратов стало достаточно большим, они просто стали поднимать короб, что, в общем-то, заранее предсказывалось специалистами.

С той же проблемой столкнулись при добыче традиционного газа. Кроме «природных» газовых гидратов, образование газовых гидратов является большой проблемой в магистральных газопроводах, расположенных в условиях умеренного и холодного климата, поскольку газовые гидраты способны забить газопровод и снизить его пропускную способность. Для того, чтобы этого не происходило, в природный газ добавляют небольшое количество ингибитора и ли же просто используют подогрев.

Эти проблемы решают такими же способами как и при добычи: понижая давления, нагревая, вводя ингибитор.

Заключение

В данной статье были рассмотрены барьеры, стоящие на пути коммерческой добычи газогидратов. Они встречаются уже на этапе разработке газовых месторождений, непосредственно при самой добычи. Кроме того, на данный момент газогидраты являются проблемой при нефте- и газодобычи. На сегодняшний день, впечатляющие запасы газогидратов, экономическая рентабельность требуют накопления информации и уточнений. Специалисты до сих пор находятся в поиске оптимальных решений разработки газигидратных месторождений. Но с развитием технологий стоимость разработки залежей должна снизиться.

Библиографический список:


1. Васильев А., Димитров Л. Оценка пространственного распределения и запасов газогидратов в Черном море // Геология и геофизика. 2002. №7. т. 43.
2. Дядин Ю. А., Гущин А.Л. Газовые гидраты. // Соросовский образовательный журнал, №3, 1998, с. 55–64
3. Макогон Ю.Ф. Природные газовые гидраты: распространение, модели образования, ресурсы. – 70 с.
4. Трофимук А. А., Макогон Ю. Ф., Толкачев М. В., Черский Н. В. Особенности обнаружения разведки и разработки газогидратных залежей -2013 г. [Электронный ресурс] http://vimpelneft.com/fotogalereya/6-komanda-vymlnefti/detail/32-komanda-vympelnefti
5. Химия и Жизнь, 2006, №6, стр. 8.
6. The Day The Earth Nearly Died – 5. 12. 2002 [электронный ресурс] http://www.bbc.co.uk/science/horizon/2002/dayearthdied.shtml

Рецензии:

1.12.2015, 12:12 Мордашев Владимир Михайлович
Рецензия : Статья посвящена широкому кругу проблем, связанных с актуальной задачей освоения газогидратов - перспективного энергетического ресурса. Решение этих проблем потребует, в том числе, анализа и обобщения разнородных данных научных и технологических исследований, носящих зачастую неупорядоченный, хаотический характер. Поэтому рецензент рекомендует авторам в своей дальнейшей работе обратить внимание на статью "Эмпиризм для хаоса", сайт, №24, 2015, с. 124-128. Статья "Проблемы освоения газогидратов" представляет несомненный интерес для широкого круга специалистов, её следует опубликовать.

18.12.2015 2:02 Ответ на рецензию автора Курикова Полина Робертовна :
Ознакомилась со статьей, при дальнейшей разработке темы,решении освещенных проблем, буду пользоваться данными рекомендациями. Благодарю.

Газовые гидраты – это твердые растворы, растворителем которых является кристаллическая решетка состоящая из молекул воды. Внутри воды размещаются молекулы «растворенного газа», размеры которых определяют возможность образования гидратов только из метана, этана, пропана и изобутана. Для образования газовых гидратов необходимы низкие температуры и давления, сочетания которых возможно в пластовых условиях лишь в районах развития мощной толщи многолетней мерзлоты.

По различным оценкам, запасы земных углеводородов в гидратах составляют от 1,8·10 5 до 7,6·10 9 км³. Сейчас природные газовые гидраты приковывают особое внимание как возможный источник ископаемого топлива, а также участник изменений климата.

Образование газовых гидратов

Газовые гидраты подразделяются на техногенные (искусственные) и природные (естественные). Все известные газы при определенных давлениях и температурах образуют кристаллогидраты, структура которых зависит от состава газа, давления и температуры. Гидраты могут стабильно существовать в широком диапазоне давлений и температур. Например, гидрат метана существует при давлениях от 2*10 -8 до 2*10 3 MPa и температурах от 70 до 350 K.

Некоторые свойства гидратов уникальны. Например, один объем воды при переходе в гидратное состояние связывает 207 объемов метана. При этом ее удельный объем возрастает на 26% (при замерзании воды ее удельный объем возрастает на 9%). 1 м 3 гидрата метана при P=26 атм и Т=0°С содержит 164 объема газа. При этом на долю газа приходится 0.2 м 3 , на воду 0,8 м 3 . Удельный объем метана в гидрате соответствует давлению порядка 1400 атм. Разложение гидрата в замкнутом объеме сопровождается значительным повышением давления. На рисунке 3.1.1 дана диаграмма условий существования гидрата некоторых компонентов природного газа в координатах давление-температура.

Рисунок 3.1.1 - Кривые газо-гидрато-образования для некоторых компонентов природного газа.

Для образования газогидрата необходимы следующие три условия:

1. Благоприятные термобарические условия. Образованию газогидратов благоприятствует сочетание низкой температуры и высокого давления.

2. Наличие гидратообразующего вещества. К гидратообразующим веществам относятся метан, этан, пропан, двуокись углерода и др.

3. Достаточное количество воды. Воды не должно быть ни слишком мало, ни слишком много.

Для предотвращения газогидратообразования достаточно исключить одно из трёх условий.

Природные газовые гидраты представляют собой метастабильный минерал, образование и разложение которого зависит от температуры, давления, химического состава газа и воды, свойств пористой среды и др.

Морфология газогидратов весьма разнообразна. В настоящее время выделяют три основных типа кристаллов:

· массивные кристаллы. Формируются за счёт сорбции газа и воды на всей поверхности непрерывно растущего кристалла;

· вискерные кристаллы. Возникают при туннельной сорбции молекул к основанию растущего кристалла;

· гель-кристаллы. Образуются в объёме воды из растворённого в ней газа при достижении условий гидратообразования.

В пластах горных пород гидраты могут быть как распределены в виде микроскопических включений, так и образовывать крупные частицы, вплоть до протяжённых пластов многометровой толщины.

Благодаря своей клатратной структуре единичный объём газового гидрата может содержать до 160-180 объёмов чистого газа. Плотность гидрата ниже плотности воды и льда (для гидрата метана около 900 кг/м³).

Ускоренному образованию газовых гидратов способствуют следующие явления:

· Турбулентность. Образование газовых гидратов активно протекает на участках с высокими скоростями потока среды. При перемешивании газа в трубопроводе, технологическом резервуаре, теплообменнике и т.п. интенсивность газогидратообразования возрастает.

· Центры кристаллизации. Центр кристаллизации представляет собой точку, в которой имеются благоприятные условия для фазового превращения, в данном случае – образования твердой фазы из жидкой.

· Свободная вода. Наличие свободной воды не является обязательным условием для гидратообразования, однако интенсивность этого процесса в присутствии свободной воды значительно возрастает. Кроме того, поверхность раздела фаз вода-газ является удобным центром кристаллизации для образования газогидратов.

Строение гидратов

В структуре газогидратов молекулы воды образуют ажурный каркас (то есть решётку хозяина), в котором имеются полости. Установлено, что полости каркаса обычно являются 12- («малые» полости), 14-, 16- и 20-гранниками («большие» полости), немного деформированными относительно идеальной формы. Эти полости могут занимать молекулы газа («молекулы-гости»). Молекулы газа связаны с каркасом воды ван-дер-ваальсовскими связями. В общем виде состав газовых гидратов описывается формулой M·n·H 2 O, где М - молекула газа-гидрато-образователя, n - число молекул воды, приходящихся на одну включённую молекулу газа, причём n - переменное число, зависящее от типа гидрато-образователя, давления и температуры.

Полости, комбинируясь между собой, образуют сплошную структуру различных типов. По принятой классификации они называются КС, ТС, ГС - соответственно кубическая, тетрагональная и гексагональная структура. В природе наиболее часто встречаются гидраты типов КС-I (англ. sI), КС-II (англ. sII), в то время как остальные являются метастабильными.

Таблица 3.2.1 - Некоторые структуры клатратных каркасов газовых гидратов.

Рисунок 3.2.1 - Кристаллические модификации газогидратов.

При повышении температуры и уменьшении давления гидрат разлагается на газ и воду с поглощением большого количества теплоты. Разложение гидрата в замкнутом объёме либо в пористой среде (естественные условия) приводит к значительному повышению давления.

Кристаллогидраты обладают высоким электрическим сопротивлением, хорошо проводят звук, и практически непроницаемы для свободных молекул воды и газа. Для них характерна аномально низкая теплопроводность (для гидрата метана при 273 К в пять раз ниже, чем у льда).

Для описания термодинамических свойств гидратов в настоящее время широко используется теория Ван-дер-Ваальса - Платтеу. Основные положения данной теории:

· решётка хозяина не деформируется в зависимости от степени заполнения молекулами-гостями либо от их вида;

· в каждой молекулярной полости может находиться не более одной молекулы-гостя;

· взаимодействие молекул-гостей пренебрежимо мало;

· к описанию применима статистическая физика.

Несмотря на успешное описание термодинамических характеристик, теория Ван-дер-Ваальса - Платтеу противоречит данным некоторых экспериментов. В частности, показано, что молекулы-гости способны определять как симметрию кристаллической решётки гидрата, так и последовательность фазовых переходов гидрата. Помимо того, обнаружено сильное воздействие гостей на молекулы-хозяева, вызывающее повышение наиболее вероятных частот собственных колебаний.

Большинство природных газов (CH4, C2H6, C3H8, CO2, N2, H2S, изобутан и т. п.) образуют гидраты, которые существуют при определённых термобарических условиях. Область их существования приурочена к морским донным осадкам и к областям многолетнемёрзлых пород. Преобладающими природными газовыми гидратами являются гидраты метана и диоксида углерода.

При добыче газа гидраты могут образовываться в стволах скважин, промышленных коммуникациях и магистральных газопроводах. Отлагаясь на стенках труб, гидраты резко уменьшают их пропускную способность. Для борьбы с образованием гидратов на газовых промыслах вводят в скважины и трубопроводы различные ингибиторы(метиловый спирт, гликоли, 30%-ный раствор CaCl2), а также поддерживают температуру потока газа выше температуры гидратообразования с помощью подогревателей, теплоизоляцией трубопроводов и подбором режима эксплуатации, обеспечивающего максимальную температуру газового потока. Для предупреждения гидратообразования в магистральных газопроводах наиболее эффективна газоосушка - очистка газа от паров воды.

Состав и свойства воды

Около 71 % поверхности Земли покрыто водой (океаны, моря, озёра, реки, льды) - 361,13 млн км 2 . На Земле примерно 96,5 % воды приходится на океаны, 1,7 % мировых запасов составляют грунтовые воды, ещё 1,7 % - ледники и ледяные шапки Антарктиды и Гренландии, небольшая часть находится в реках, озёрах и болотах, и 0,001 % в облаках (образуются из взвешенных в воздухе частиц льда и жидкой воды). Бо́льшая часть земной воды - солёная, непригодная для сельского хозяйства и питья. Доля пресной составляет около 2,5 %, причём 98,8 % этой воды находится в ледниках и грунтовых водах. Менее 0,3 % всей пресной воды содержится в реках, озёрах и атмосфере, и ещё меньшее количество (0,003 %) находится в живых организмах.

Исключительно важна роль воды в возникновении и поддержании жизни на Земле, в химическом строении живых организмов, в формировании климата и погоды. Вода является важнейшим веществом для всех живых существ на планете Земля.

Химический состав воды

Вода (оксид водорода) - бинарное неорганическое соединение с химической формулой Н 2 O. Молекула воды состоит из двух атомов водорода и одного - кислорода, которые соединены между собой ковалентной связью. При нормальных условиях представляет собой прозрачную жидкость, не имеет цвета (в малом объёме), запаха и вкуса. В твёрдом состоянии называется льдом (кристаллы льда могут образовывать снег или иней), а в газообразном - водяным паром. Вода также может существовать в виде жидких кристаллов (на гидрофильных поверхностях). Составляет приблизительно около 0,05 массы Земли.

Состав воды можно выяснить с помощью реакции разложения электрическим током. Образуется два объема водорода на один объем кислорода (объем газа пропорционален количеству вещества):

2H 2 O = 2H 2 + O 2

Вода состоит из молекул. Каждая молекула содержит два атома водорода, соединенные ковалентными связями с одним атомом кислорода. Угол между связями около 105º.

Беседа с геологом, академиком НАН Украины, директором Центрального научно-природоведческого музея НАНУ Евгением Федоровичем Шнюковым

Есть разные прогнозы о том, сколько на нашей планете осталось топлива. Относительно нефти пессимисты из числа ученых говорят: ее запасы будут исчерпаны через 10-15 лет; оптимисты «успокаивают», продлевая этот срок лет до 30-40.

Угля вроде бы хватит на дольше, на несколько столетий, но добывать его все труднее и дороже: эпоха толстых, легко доступных залежей «черного золота» отходит в прошлое.

Что же нам еще остается? Электростанции солнечные, ветровые, приливные, геотермальные, - все это, честно говоря, еще в зародыше...
Так обстоят дела с энергетикой в масштабах всей Земли: что же можно сказать о будущем Украины? Здесь все просто трагично. Евгений Федорович говорит: «Сейчас мы на очень коротком поводке у поставщиков энергоносителей. Мы добываем всего 8-10 процентов потребляемой нефти и максимум 20 процентов газа, - все остальное покупаем».

Видный украинский ученый произносит слова великой надежды. Надежды, которую дает Черное море - и лежащие на его дне диковинные вещества, газогидраты.

Справка:

На непосвященный взгляд газовые гидраты представляют собой обычные грязноватые комочки льда. На самом деле это - уникальная твердая смесь, в которой молекулы газа "впаяны" в каркас из молекул воды. В природе газогидраты образуются в районах вечной мерзлоты и в глубоководных осадках морей и океанов, в условиях высокого давления и низких температур. Количество органического углерода, запасенного в виде газогидратов метана, больше, чем во всех остальных залежах планеты, вместе взятых!

Давайте для начала определим, что это такое - газогидраты?

Если популярно говорить, это своеобразный лед, для образования которого не нужен мороз. Газогидраты возникают при определенных давлении и температуре, - именно таких, какие есть на дне Черного моря, на глубине свыше 700 метров. В их составе, в связанном состоянии, находится горючий газ метан. Если его оттуда освободить, - из одного кубометра «теплого льда» выйдет до 200 кубометров метана!

И много там, на дне, этого «льда»?

Он залегает на огромной площади, слоем мощностью до 400 метров. Российские геологи выполнили большую работу по изучению черноморского дна и определили, что запасы метана, связанные в газогидратах, достигают 25 триллионов кубометров! Триллионов семь, вероятно, приходится на долю Украины...

Звучит, конечно, очень внушительно, но все-таки: можно ли сравнить эти запасы с известными газовыми месторождениями на суше, например, на Таймыре?

Таймыр беднее газом. Мало того: надо учитывать географию. Если Черное море - теплое, а потребители газа тут же рядом, то с крайнего Севера надо прокладывать через тундру, в суровейших условиях, гигантские газопроводы, тянуть их на тысячи километров, поддерживать... Если освоим черноморскую сокровищницу, метан будет и обильный, и дешевый.

А откуда они вообще берутся в море, эти газогидраты? Каким образом сложился 400-метровый слой на дне?

Думаю, они глубинного происхождения. То есть, метан выходит из недр земли через разломы в коре с больших глубин, порядка нескольких десятков километров.

Впрочем, возможно и существование промежуточных коллекторов, этаких подземных «карманов», где газы долгое время накапливаются, а потом находят себе дорогу наверх...

Если выход метана находится достаточно глубоко под водой, газ увязывается в составе «теплого льда». Но иногда толщу газогидратов прорывают свободные, очень мощные выбросы газа.

Иногда такой «метановый фонтан» бьет сутками, месяцами... а то и начинает «работать» периодически, то затихая, то опять прорываясь на поверхность моря. Такие феномены называют грязевыми вулканами, - ведь газ, устремляясь со дна ввысь, прихватывает с собой массы донного грунта, камней, воды...

Зрелище бывает просто грандиозным, взрывы темной грязи с грохотом взлетают на высоту до ста метров. Мало того, подчас газы при выбросе воспламеняются!

В Каспийском море тоже есть выходы метана, так вот: грязевые вулканы возле Баку иногда полыхали столь внушительно, что их принимали за атомные взрывы. Тем более, грибовидное облако...

Во время одного извержения было выброшено около пятисот миллионов кубометров газа! Представляете себе, что бы произошло, сколько было бы жертв, случись нечто подобное на суше?..

Мы хорошо знаем периодически действующий грязевой вулкан в Азовском море, напротив казацкой станицы Голубицкой, возле города Темрюка. Впервые его черные рокочущие выбросы еще в 1799 году увидели казаки-запорожцы, переселенные на Кубань.

По словам ученого тех времен, российского академика Петра-Симона Палласа*, вулкан создал вокруг себя круглый остров диаметром около ста метров.

Извержения Голубицкого вулкана много раз повторялись в течение ХІХ и ХХ веков. Наиболее крупный выброс пришелся на 1988 год: тогда вязкий остров возник за несколько часов и просуществовал много месяцев. Голубицкий извергается и ныне...

Бывают донные газовые выбросы, не похожие на вулканы, но тоже очень впечатляющие. Во время предпоследнего рейса нашего исследовательского судна «Профессор Водяницкий» мы нашли два таких фонтана: каждый был около 850 метров высотой и шириной до 400 метров! Интересно, что на суше это была бы экологическая катастрофа, а в море - никаких ее следов. Спокойно плавают вокруг рыбы, растут водоросли...

Во многих местах со дна поднимаются куда более скромные струи метана, расплывающиеся облаками. Мы их зовем - сипы. Одни из них выбрасывают газ ровным, постоянным потоком, иные - пульсируют, напоминая пыхтящую трубку курильщика... Сипов достаточно много и в районе Керченско-Таманском, и у берегов Кавказа, и возле побережий Грузии, Болгарии...

Кстати, о курильщике. Именно так мы называем своеобразный экспонат, находящийся у нас в музее. Это такой минеральный вырост из черноморского дна, похожий на кубок. Он сложился постепенно, за девять тысяч лет, вокруг постоянно бившей снизу метановой струи.

Газовый фонтан нес твердые частицы, они и образовали такую занятную структуру со сквозным каналом внутри. Мы этого «курильщика» добыли во время очередной экспедиции на исследовательском судне «Профессор Водяницкий».

Да, действительно, - Черное море, наверное, хранит в себе куда больше загадок и сюрпризов, чем любой другой водоем в мире.
Взять хотя бы тот факт, что, начиная с глубины в двести метров, оно вполне заслуживает названия Мертвого моря, поскольку оттуда до самого дна вода насыщена сероводородом.
Я знаю из одной вашей книги, Евгений Федорович, что еще относительно недавно существовал проект промышленного извлечения из черноморских вод громадных количеств серы, а также тяжелых металлов...
Но это - особая тема для разговора. Вернемся к газогидратам. Насколько экономически выгодна добыча метана из этих соединений? Не затратим ли мы при этом больше энергии, чем потом получим?

Нет, затея вполне оправдана с точки зрения экономики. По крайней мере, теперь. Должен вам сказать, что, вообще, честь открытия газогидратов принадлежит нашим, советским ученым, они обнаружили первые месторождения на северо-востоке Союза.

Так вот, - тогда добыча не пошла, поскольку была слишком технологически сложной.

А вот сейчас морские газогидраты признаны самым вероятным альтернативным топливом во многих странах. Над их разведкой и освоением работают во Франции, Германии, США; но особенно активны Канада и Япония.

Японцы планируют начать экспериментальную добычу метана из «горючего льда» возле своих островов, во впадине Нянхай, уже в 2007 году; а еще десять лет спустя пойдет масштабная добыча, да такая, что Япония, вечно все ввозящая, станет одним из мировых экспортеров газа!

Недавно российский «Газпром» произвел переоценку газовых запасов страны, включая и морские, связанные на дне.

Оказалось, что резервы «голубого топлива» в пятьдесят раз больше, чем считали прежде! Добывать газогидраты в промышленных объемах Россия намеревается с 2020 года.

Кстати, при газодобыче в море речь пойдет, очевидно, не только о газогидратах. Я тут вам рассказывал о вулканах и сипах, то есть, о выходах свободного газа непосредственно из дна.

Мы убеждены, что такой газ в огромных массах накапливается под шапкой «горючего льда», он там закупорен, законсервирован, - потому иногда и прорывается просто катастрофически.

Возможно, проще будет сначала пройти 400-метровую толщу «ледника» и выкачать подгидратный метан, а потом уже браться за сам слой...

И все-таки, морские глубины... Это не помеха для добычи?

Самая большая глубина Черного моря не превышает 2100 метров. Нынешняя горнодобывающая промышленность извлекает нефть и газ с глубины в четыре-пять километров. Так что здесь нет особых проблем.

Как вы думаете, когда - реально - можно у нас ожидать начала работ, подобных тем, которые ведутся в Японии или в России?

Вот это, в настоящих условиях, сказать труднее всего...
Есть известный девиз геологических конгрессов: «Умом и молотком». А по поводу наших топливных сокровищ я бы сказал иначе: умом и финансами!

Что мы можем разведать или добыть, когда тому же «Профессору Водяницкому», в лучшем случае, выделяются средства на двенадцатидневный рейс?!

Надо вложить большие деньги, создать могучую комплексную программу, привлечь специалистов разных профилей... Вообще, следует поднять эту работу на тот уровень, на котором велось в Советском Союзе освоение атомной энергии.

Тогда, и только тогда лет через десять, пятнадцать, возможно, нам удастся обеспечить энергетическое будущее Украины.

Надеюсь, что наше социальное сознание к тому времени будет идти вровень с научно-техническим, и газовые сокровища Черного моря принесут благополучие, в самом деле, всей Украине, а не отдельным (и не лучшим) ее представителям, присосавшимся к добывающей отрасли.

Только если запасы газогидратов, как и все клады, сокрытые в наших недрах, станут воистину всенародной собственностью, пользу от них сможет получить каждый наш соотечественник.

Будем на это надеяться...

Справка:

В Черном море газогидраты были обнаружены экспедициями Министерства геологии и Академии наук СССР в конце 80-х годов. В 90-е годы и начале текущего десятилетия исследования в этой области также проводились украинскими и болгарскими учеными. Полученные в итоге данные имеют приблизительный характер: по различным оценкам, запасы черноморских газогидратов, сосредоточенных, как правило, в нескольких десятках или первых сотнях метров под морским дном, могут составлять от 25 до 100 трлн куб м.

Немецко-украинская экспедиция 2010 г. обнаружила запасы газогидратов недалеко от Севастополя. Но для их более-менее точной оценки нужны будут широкомасштабные разведочные работы.

Впрочем, говорить о том, что Украина в обозримом будущем сможет достичь энергетической независимости благодаря разработке черноморских газогидратов, еще рано. Проблема в том, что газ, заключенный в ледяной ловушке, очень сложно извлечь, не потеряв по дороге.

Газогидраты существуют только благодаря низкой температуре и огромному давлению, "разрушить" их на месте залегания весьма нелегко. Даже при нормальном атмосферном давлении они начинают плавиться только при 10-20 градусах.

Сегодня существуют технологии, позволяющие добывать газ из газогидратов только на суше, причем их эффективность оставляет желать лучшего. Впервые они были опробованы еще в конце 60-х годов на Мессояхском месторождении на полуострове Таймыр, где добыча газа началась в 1967 г. Для "расплавления" газогидратов там используется депрессионный способ добычи, заключающийся в искусственном снижении пластового давления посредством откачки воды из скважины. На это приходится тратить много энергии, из-за чего значительная часть добываемого газа используется на месте, а сам газ получается весьма дорогим.

То что Мессояхское месторождение вообще стали разрабатывать, объясняется его уникальным расположением: оно является ближайшим (около 280 км) от Норильска, к которому в 1969 г. был протянут газопровод. Поставлять газ на промышленные предприятия Норильска с месторождений Ямала, до которых в несколько раз дальше, было признано экономически менее целесообразным.

За сорок с лишним лет эксплуатации на Мессояхском месторождении добыто около 12.5 млн куб м газа, что составляет около 65% от его оценочных запасов. Объемы добычи падают, в 2009 г. они составили всего 213 тыс куб м, так что большая часть поставок газа в Норильский промышленный район приходится на другие, традиционные месторождения.

Помимо Мессояхского месторождения, в мире существует еще одно место, где добывали газ из газогидратов - экспериментальная буровая станция Mallik, расположенная недалеко от устья реки Маккензи на северо-западе Канады. В 1998-2008 гг. японско-канадская группа ученых при участии специалистов из США, Германии и Индии вела там пробное бурение, обнаружив слой газогидратов на глубине около 1000-1200 м.

И сейчас на этой станции продолжается изучение различных технологий в данной области. Тестовая добыча велась в течение 6 дней зимой 2008 г. и составила около 13 тыс куб м газа. При этом использовался тот же депрессионный метод, что и на Таймыре. Ранее на Mallik был испытан и тепловой метод, заключающийся в нагревании газогидратного пласта посредством закачки пара или горячей воды, но расход энергии там оказался сравнимым с энергоемкостью высвободившегося газа.

Некоторыми специалистами предлагается технология замещения, заключающаяся в вытеснении метана из кларатов посредством заполнения их другим газом. Для этого лучше всего подходит углекислый газ, что позволило бы заодно решить и проблему его захоронения. Однако эта технология пока находится на стадии лабораторных исследований, до промышленных масштабов она дорастет, очевидно, еще не скоро.

Основная проблема добычи газа из газогидратов заключается в том, что для разрушения их структуры и извлечения газа из "клеток"-кларатов нужно затратить довольно большую энергию, что, естественно, приводит к существенному росту затрат. По оценкам исследователя из US Geological Service Тимоти Коллетта, себестоимость добычи газа из газогидратов в Арктике может составлять 100-200% затрат при разработке традиционных месторождений, а морской газогидратный газ будет еще более дорогостоящим.

Кроме того, при организации добычи с морского дна существует реальная опасность поднятия "метансодержащего льда" на поверхность, что приведет к взрывному выделению газа. По одной из наиболее вероятных версий, именно такой подъем газогидратного пласта стал причиной взрыва платформы Deepwater Horizon и ее гибели в апреле этого года. Некоторые специалисты советуют вообще не трогать газогидраты, поскольку это может привести к значительным выбросам в атмосферу содержащегося в них метана, который является в 20 раз более сильным парниковым газом, чем диоксид углерода.

Тем не менее, в ряде стран мира разрабатываются проекты добычи природного газа из газогидратов, в том числе и на морском дне. При этом эксплуатация газогидратных месторождений может стартовать уже во второй половине текущего десятилетия.

Все это не мешает и Украине включиться в "газогидратную гонку". Тем более, что уже несколько лет инновационную технологию добычи газа из газогидратов предлагает директор научно-исследовательской и внедренческой фирмы "Лед-газогидрат", профессор Одесской государственной академии холода Леонард Смирнов. Его идея (запатентованная) заключается в закачке в газогидратные пласты под давлением концентрированного соляного раствора или (летом) теплой, прогретой солнцем, морской воды.

По мнению Л.Смирнова, соль будет оказывать на газогидрат такое же действие, как и на обычный лед, т.е. снижать температуру его плавления, высвобождая заключенный в нем газ, который будет откачиваться через вытяжные скважины. Помимо газа, данная технология будет также обеспечивать получение чистой талой воды, что может быть весьма актуально в условиях Крыма.

Правда, для строительства тестового газодобывающего комплекса по технологии Л.Смирнова требуется около $500 млн. Пока ученому не удалось заинтересовать своим проектом украинский частный бизнес, а у государства нет таких средств. Кроме того, данная технология, как и многие другие возможные способы извлечения газа из газогидратов, пока не проверена на практике и не обязательно является панацеей. К сожалению, в отличие от России, США и Канады, в Украине нет сухопутного "полигона", где можно было бы проводить исследования в газогидратной области при относительно небольших затратах.

Вообще складывается впечатление, что Украина очень богата нетрадиционными источниками природного газа. У нее есть большие запасы шахтного метана, есть, очевидно, сланцевый газ, доказано наличие месторождений газогидратов… Однако всех их объединяют большая сложность и дороговизна добычи, а также отсутствие эффективных и экономически обоснованных технологий. Чтобы быть на переднем краю прогресса в этих областях, украинскому правительству нужно или самому финансировать обширные и дорогостоящие исследовательские программы, или заинтересовать частный бизнес возможностью получения солидной прибыли от многомиллионных инвестиций.

Но первый путь для Украины пока совершенно нереален из-за хронического отсутствия средств в казне, а на второй, очевидно, можно будет вступить только после появления уже зарекомендовавших себя технологий в других странах.

Газогидраты представляют собой очень перспективный источник природного газа для Украины. Но это своеобразная "заначка на будущее" - на то время, когда в мире научатся сравнительно несложно и недорого добывать такой газ. На ближайшие же годы приоритетными, очевидно, должны стать иные, более доступные источники.

Газогидратные лидеры

На сегодняшний день лидерами на газогидратном направлении являются Япония, Корея и Индия. Все три страны являются крупными импортерами энергоресурсов, и поэтому считают разработку газогидратных месторождений приемлемой альтернативой зарубежным закупкам. Правда, во всех трех странах проекты в данной области стартовали в 2007-2008 гг., во время наивысшего подъема цен как на нефть, так и на сжиженный природный газ.

В Корее реализацией проекта занимается государственная компания Korea National Oil Corp. С целью приобретения опыта она участвует в исследованиях в области добычи газа из газогидратов, которые сейчас проводятся на Аляске с участием американских федеральных организаций и ряда частных компаний. Залежи оцениваются в 600 млн т (более 1 трлн куб м) природного газа. Газогидраты залегают под морским дном в Японском море на расстоянии около 135 км от побережья страны.

Несмотря на падение цен на сжиженный газ, правительство Кореи не собирается отказываться от газогидратного проекта. Он включен в государственную программу развития нефтегазодобывающей отрасли, цель которой заключается в повышении уровня самообеспечения страны энергоресурсами (в 2009 г. 91.9% потребностей Южной Кореи в энергоносителях покрывалось за счет импорта). Начало добычи газа из газогидратов запланировано на 2015 г.

В индийских водах прогнозные резервы газогидратного газа оцениваются более чем в 55 трлн куб м, а месторождение Krishna-Godavari в Бенгальском заливе считается одним из крупнейших в мире. Еще в 1997 г. для проведения исследований в этом направлении была основана государственная компания National Gas Hydrate Program. Начать разведочные работы планировалось в 2010 г., а коммерческую добычу - в 2014-2015 гг.

Однако кризис отодвинул эти планы, а в начале 2010 г. правительство страны решило создать новую структуру с привлечением государственных агентств и частных нефтегазовых компаний с целью совместного финансирования НИОКР в данной области. Как признают индийские специалисты, в настоящее время в их распоряжении нет технологий добычи газогидратного газа с морского дна, их нужно создавать.

Затормозился, похоже, и японский проект. В 2008 г. правительство страны приняло решение о разработке залежей газогидратов, которые были найдены на юге-востоке от острова Хонсю во впадине Нанкай. Запасы газа оценивались в объеме до 50 трлн куб м, его добычу планировалось начать в 2016 г. Однако с начала кризиса никакой новой информации на эту тему не поступало.

В США исследования в области газогидратного газа осуществляются на двух направлениях. Во-первых, продолжаются разведка и отработка технологий наземной добычи на Аляске, где запасы газогидратного газа, по предварительным оценкам USGS, составляют около 16 трлн куб м. Этот проект реализуют Министерство энергетики США и ряд компаний. На лето 2010 г. намечено проведение тестовой добычи на основе разведки, проведенной тремя годами ранее компанией BP. При этом ConocoPhillips должна впервые испытать в полевых условиях технологию замещения метана, содержащегося в газогидратах, углекислым газом. Правда, по данным американских СМИ, программа этого года может быть выполнена не полностью из-за недостатка государственного финансирования.

Кроме того, в 2009 г. стартовала двухлетняя программа исследований в Мексиканском заливе, в которой партнером государства является Chevron. Состоявшаяся летом 2009 г. экспедиция обнаружила газогидраты под различными участками морского дна.

По оценкам американской Mineral Management Service (организация при Министерстве внутренних дел), запасы газогидратного газа в Мексиканском заливе могут достигать астрономического значения - 600 трлн куб м! Однако крупные нефтегазовые компании пока не слишком торопятся осваивать эти беспредельные ресурсы. Они предпочитают участвовать в программах, финансируемых государством, из-за слишком высоких затрат и риска, связанных с газогидратными проектами.

Как отмечают некоторые американские аналитики, ввод в эксплуатацию газогидратных месторождений с их гигантскими ресурсами может обрушить цены на природный газ, сделав эти проекты убыточными. Как это, похоже, уже случилось со сланцевым газом.

МОСКВА, 18 января. /ТАСС/. Российские математики создали модель для разработки залежей самого богатого источника природного газа на планете - газовых гидратов, концентрация которых высока в арктической зоне, а ученые Сколтеха предложили технологию добычи метана из гидратов. Эксперты рассказали ТАСС, как добыча такого метана поможет снизить парниковый эффект, в чем преимущества новых исследований, и есть ли перспективы у промышленной разработки газогидратов в России.

Против парникового эффекта

Газовые гидраты - это твердые кристаллические соединения льда и газа, их еще называют «горючий лед». В природе они встречаются в толще океанского дна и в вечномерзлых породах, поэтому добывать их очень сложно - на глубину в нескольких сотен метров нужно бурить скважины, а потом выделять природный газ из ледовых отложений и транспортировать его на поверхность. Сделать это удалось в Южно-Китайском море в 2017 году китайским нефтяникам, но для этого им пришлось углубиться в толщу морского дна на более чем 200 метров при том, что глубина в районе добычи превышала 1,2 км.

Исследователи считают газовые гидраты перспективным источником энергии, который может быть востребован, в частности, странами, ограниченными в других энергоресрусах, например, Японией и Южной Кореей. Оценки содержания метана, сжигание которого дает энергию, в газогидратах в мире разнятся: от 2,8 квадриллионов тонн по данным Минэнерго РФ до 5 квадриллионов тонн по данным Мирового энергетического агентства (МЭА). Даже минимальные оценки отражают огромные запасы: для сравнения, общемировой объем запасов нефти корпорация BP (British Petroleum) в 2015 году оценила в 240 млрд тонн.

"По оценкам некоторых организаций, прежде всего Газпром ВНИИГАЗ, ресурсы метана в газогидратах на территории РФ составляют от 100 до 1000 трлн кубометров, в арктической зоне, в том числе морях, - до 600-700 трлн кубометров, но это очень приблизительно", - рассказал ТАСС ведущий научный сотрудник Центра добычи углеводородов Сколковского института науки и технологий (Сколтеха) Евгений Чувилин.

Помимо собственно источника энергии, газогидраты могут стать спасением от парниковых газов, что позволит остановить глобальное потепление. Освободившиеся от метана пустоты можно заполнять углекислым газом.

"По оценкам исследователей, в гидратах метана содержится более 50% углерода от суммарных известных мировых запасов углеводородов. Это не только самый богатый на нашей планете источник углеводородного газа, но и возможное вместилище для углекислого газа, который считается парниковым. Можно убить двух зайцев - добыть метан, сжечь его для получения энергии и закачать на его место полученный при сжигании углекислый газ, который займет место метана в гидрате", - рассказал ТАСС замдиректора по научной работе Тюменского филиала Института теоретической и прикладной механики Сибирского отделения РАН Наиль Мусакаев.

В условиях вечной мерзлоты

На сегодня исследователи выделяют три основных перспективных способа добычи газовых гидратов.

"Прежде чем добыть газ из гидратов, требуется их разложить на составляющие - газ и воду или газ и лед. Можно выделить основные методы добычи газа - снижение давления на забое скважины, нагрев пласта с помощью горячей воды или пара, подача в пласт ингибиторов (веществ для разложения газогидратов - прим. ТАСС)", - пояснил Мусакаев.

Ученые из Тюмени и Стерлитамака создали математическую модель для добычи метана в вечной мерзлоте. Примечательна она тем, что учитывает процесс образования льда во время разработки месторождения.

"Образование льда имеет плюсы и минусы: он может закупорить оборудование, но, с другой стороны, разложение газогидрата на газ и лед требует в три раза меньше энергии, чем при разложении на газ и воду", - рассказал Мусакаев.

Преимущество математического моделирования - возможность спрогнозировать сценарий разработки газогидратных залежей, в том числе оценить экономическую эффективность способов добычи газа из таких месторождений. Результаты могут заинтересовать проектные организации, которые занимаются планированием и разведкой на газогидратных месторождениях, отметил ученый.

Сколтех также занимается разработкой технологий для добычи метана из гидратов. Совместно с коллегами из Университета Хериота-Уатта в Эдинбурге специалисты Сколтеха предложили извлекать метан из газогидратов путем закачки воздуха в пласт породы. «Этот метод - более экономичный по сравнению с существующими, и меньше влияет на окружающую среду», - пояснил Чувилин.

В данном методе предполагается, что в пласт закачивается углекислый газ или азот, и газогидраты из-за разницы в давлении разлагаются на составляющие. «Мы пока проводим методические исследования по опробованию метода и его эффективности. До создания технологии еще далеко, пока мы создаем физико-химические основы этой технологии», - подчеркнул ученый.

По словам Чувилина, в России пока нет полностью готовых технологий для эффективной добычи метана из гидратов, так как нет целевых программ поддержки этого научного направления. Но разработки все равно ведутся. «Может быть, газовые гидраты не станут главным энергоресурсом будущего, но их использование наверняка потребует развития новых знаний», - добавил Мусакаев.

Экономическая целесообразность

Разведку и разработку газогидратных месторождений учитывает в числе долгосрочных перспектив газодобычи прогноз развития топливно-энергетического комплекса России на период до 2035 года. В документе отмечается, что газогидраты могут стать «фактором в мировой энергетике только через 30-40 лет», но при этом не исключается прорывной сценарий. В любом случае разработка гидратов повлечет глобальный передел на мировом рынке топливных ресурсов - цены на газ будут снижаться, и сохранить доходы добывающие корпорации смогут только захватывая новые рынки и увеличивая объем продаж. Для массовой разработки таких месторождений надо создавать новые технологии, улучшать и удешевлять существующие, отмечается в стратегии.

Учитывая труднодоступность гидратов и сложность их добычи, эксперты называют их перспективным источником энергии, но отмечают, что это не тенденция ближайших лет - для гидратов нужны новые технологии, которые пока только разрабатываются. А в условиях налаженной добычи природного газа метан из гидратов находится в не самом выигрышном положении. В дальнейшем все будет зависеть от конъюнктуры рынка энергоносителей.

"Сроки промышленной добычи зависят как от экономически доступной технологии поиска, локализации и добычи газа, так и от рыночных факторов. Газодобывающие компании имеют достаточное количество запасов традиционного газа, поэтому рассматривают технологии добычи газа из газогидратов как задел на долгосрочную перспективу. По моей оценке, промышленная добыча в РФ начнется не ранее чем через 10 лет", - сказал эксперт.

По мнению Чувилина, в России есть месторождения, на которых метан из газогидратов могут начать добывать в ближайшие 10 лет, и это будет достаточно перспективно. «На некоторых газовых промыслах севера Западной Сибири при истощении традиционных газовых коллекторов возможна разработка вышележащих горизонтов, где газ может находиться и в гидратной форме. Это возможно в ближайшем десятилетии, все будет зависеть от стоимости энергоносителей», - резюмировал собеседник агентства.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «naruhog.ru» — Советы по чистоте. Стирка, глажка, уборка