Шпаргалка: Преподавание алгебраического материала в начальной школе. Методика изучения алгебраического материала в начальном курсе математики

«Изучение алгебраического материала в начальной школе»

Выполнила учитель высшей категории Аверьякова Н.Н.

Введение.

Глава 1. Общетеоретические аспекты изучения алгебраического материала в начальной школе.

1.1.Опыт введения элементов алгебры в начальной школе.

1.2. Психологические основы введения алгебраических понятий в начальной школе.

1.3. Проблема происхождения алгебраических понятий и её значение для построения учебного предмета.

2.1. Обучение в начальной школе с точки зрения потребностей средней школы.

2.2. Сравнение (противопоставление) понятий на уроках математики.

2.3. Совместное изучение сложения и вычитания, умножения и деления.

Глава 3. Исследовательская работа по изучению алгебраического материала на уроках математики в начальных классах школы №72.

3.1. Обоснование использования инновационных технологий (технология УДЕ).

3.2. Об опыте ознакомления с алгебраическими понятиями.

3.3.Диагностика результатов обучения математике.

Заключение.

Библиографический список.

Введение

В любой современной системе общего образования математика занимает одно из центральных мест, что несомненно говорит об уникальности этой области знаний.

Что представляет собой современная математика? Зачем она нужна? Эти и подобные вопросы часто задают учителям дети. И каждый раз ответ будет разным в зависимости от уровня развития ребёнка и его образовательных потребностей.

Часто говорят, что математика – это язык современной науки. Однако, представляется что это высказывание имеет существенный дефект. Язык математики распространен так широко и так часто оказывается эффективным именно потому, что математика к нему не сводится.

Выдающийся отечественный математик А.Н.Колмогоров писал: «Математика не просто один из языков. Математика – это язык плюс рассуждения, это как бы язык и логика вместе. Математика – орудие для размышления. В ней сконцентрированы результаты точного мышления многих людей. При помощи математики можно связать одно рассуждение с другим…Очевидные сложности природы с её странными законами и правилами, каждое из которых допускает очень подробное отдельное объяснение, на самом деле тесно связаны. Однако, если вы не желаете пользоваться математикой, то в этом огромном многообразии фактов вы не увидите, что логика позволяет переходить от одного к другому.»(с.44 –(12))

Таким образом, математика позволяет сформировать определённые формы мышления, необходимые для изучения окружающего нас мира.

Наша система образования устроена так, что для многих школа даёт единственную возможность приобщиться к математической культуре, овладеть ценностями, заключенными в математике.

Каково же влияние математики вообще и школьной математики в частности на воспитание творческой личности? Обучение на уроках математики искусству решать задачи доставляет нам исключительно благоприятную возможность для формирования у учащихся определенного склада ума. Необходимость исследовательской деятельности развивает интерес к закономерностям, учит видеть красоту и гармонию человеческой мысли. Все это является важнейшим элементом общей культуры. Важное влияние оказывает курс математики на формирование различных форм мышления: логического, пространственно-геометрического, алгоритмического. Любой творческий процесс начинается с формулировки гипотезы. Математика при соответствующей организации обучения, будучи хорошей школой построения и проверки гипотез, учит сравнивать различные гипотезы, находить оптимальный вариант, ставить новые задачи, искать пути их решения. Максимально раскрывая возможности человеческого мышления, математика является высшим достижением.

Курс математики(без геометрии) фактически разбит на 3 основные части: на арифметику (1-5классы), алгебру (6-классы), элементы анализа (9-11классы). Каждая эта часть имеет свою особую «технологию». Так, в арифметике она связана, например, с вычислениями, производимыми над многозначными числами, в алгебре- с тождественными преобразованиями, логарифмированием, в анализе- с дифференцированием. Но каковы более глубокие основания, связанные с понятийным содержанием каждой части? Следующий вопрос касается оснований для различения школьной арифметики и алгебры. В арифметику включают изучение натуральных чисел(целых положительных) и дробей (простых и десятичных). Однако специальный анализ показывает, что соединение этих видов чисел в одном школьном предмете неправомерно. Дело в том, что эти числа имеют разные функции: первые связаны со счётом предметов, вторые- с измерением величин. С точки зрения измерения величин, как отмечал А.Н.Колмогоров, «нет столь глубокого различия между рациональными и иррациональными действительными числами. Из педагогических соображений надо задерживаться на рациональных числах, так как их легко записать в форме дробей, однако то употребление, которое им с самого начала придается, должно было бы сразу привести к действительным числам во всей их общности»(12-с.9). Таким образом, есть реальная возможность на базе натуральных (целых) чисел формировать сразу «самое общее понятие числа»(по терминологии А.Лебега), понятие действительного числа. Но со стороны построения программы это означает не более не менее, как ликвидацию арифметики дробей в её школьной интерпретации. Переход от целых чисел к действительным- это переход от арифметики к алгебре, к созданию фундамента для анализа. Эти идеи, высказанные более 30лет назад, актуальны и сегодня. Возможно ли изменение структуры обучения математики в начальной школе в данном направлении? Каковы достоинства и недостатки алгебраизации начального обучения математики? Цель данной работы- попытаться ответить на поставленные вопросы.

Реализация поставленной цели требует решения следующих задач:

Рассмотрение общетеоретических аспектов введения в начальной школе алгебраических понятий величины и числа;

Изучение конкретной методики обучения этим понятиям в начальной школе;

Показать практическую применимость рассматриваемых положений в начальной школе на уроках математики в СОУ СОШ №72 учителем Аверьяковой Н.Н.

ГЛАВА 1. ОБЩЕТЕОРЕТИЧЕСКИЕ АСПЕКТЫ ИЗУЧЕНИЯ АЛГЕБРАИЧЕСКОГО МАТЕРИАЛА В НАЧАЛЬНОЙ ШКОЛЕ.

  1. ОПЫТ ВВЕДЕНИЯ ЭЛЕМЕНТОВ АЛГЕБРЫ В НАЧАЛЬНОЙ ШКОЛЕ.

Содержание учебного предмета зависит от многих факторов - от требований жизни к знаниям учащихся, от уровня соответствующих наук, от психических и физических возрастных возможностей детей. Правильный учёт этих факторов является существенным условием наиболее эффективного обучения школьников, расширения их познавательных возможностей. Но иногда это условие по ряду причин не соблюдается. Представляется, что в настоящее время программы преподавания некоторых учебных предметов, в т.ч. математики, не соответствуют новым требованиям жизни, уровню современных наук и новым данным возрастной психологии и логики. Это обстоятельство диктует необходимость теоретической и экспериментальной проверки возможных проектов нового содержания учебных предметов. Фундамент математических навыков закладывается в начальной школе. Но, к сожалению, как сами математики, так и методисты и психологи уделяют весьма малое внимание именно содержанию начальной математики. Достаточно сказать, что программа по математике в начальной школе(1-4) в основных своих чертах сложилась еще 50-60 лет назад и отражает, естественно, систему математических, методических и психологических представлений того времени.

Рассмотрим характерные особенности государственного стандарта по математике. Основным её содержанием являются целые числа и действия над ними, изучаемые в определённой последовательности. Наряду с этим программа предполагает изучение метрических мер и мер времени, овладение умением пользоваться ими для измерения, знание некоторых элементов наглядной геометрии - вычерчивание прямоугольника,квадрата, измерение отрезков, площадей, вычисление объемов. Полученные знания и навыки ученики должны применять к решению задач и выполнению простейших расчетов. На протяжении всего курса решение задач проводится параллельно изучению чисел и действий - для этого отводится половина соответствующего времени. Решение задач помогает учащимся понять конкретный смысл действия, уяснить различные случаи их применения, установить зависимость между величинами, получить элементарные навыки анализа и синтеза. С 1 по 4 класс дети решают следующие основные типы задач(простых и составных): на нахождение суммы и остатка, произведения и частного, на увеличение и уменьшение данных чисел, на разностное и кратное сравнение, на простое тройное правило, на пропорциональное деление, на нахождение неизвестного по двум разностям и другие виды задач. С разными типами зависимостей величин дети сталкиваются при решении задач. Но весьма характерно- ученики приступают к задачам после и по мере изучения чисел; главное, что требуется при решении- это найти числовой ответ. Дети с большим трудом выявляют свойства количественных отношений в конкретных, частных ситуациях, которые принято считать арифметическими задачами. Практика показывает, что манипулирование числами часто заменяет действительный анализ условий задачи с точки зрения зависимостей реальных величин. Задачи, вводимые в учебники, не представляют к тому же системы, в которых более «сложные» ситуации были бы связаны с более «глубокими» пластами количественных отношений. Задачи одной и той же трудности можно встретить и в начале, и в конце учебника. Они меняются от раздела к разделу и от класса к классу по запутанности сюжета(возрастает число действий) , по рангу чисел(от десяти до миллиарда), по сложности физических зависимостей(от задач на распределение до задач на движение) и по другим параметрам. Только один параметр –углубление в систему собственно математических закономерностей -в них проявляется слабо, неотчетливо. Поэтому очень сложно установить критерий математической трудности той или иной задачи. Почему задачи на нахождение неизвестного по двум разностям и на выяснение среднего арифметического труднее задач на разностное и кратное сравнение? Методика не даёт ответа на данный вопрос.

Таким образом, учащиеся начальных классов не получают адекватных, полноценных знаний о зависимостях величин и общих свойствах количества ни при изучении элементов теории чисел, ибо они в школьном курсе связаны по преимуществу с техникой вычислений, ни при решении задач, ибо последние не обладают соответствующей формой и не имеют требуемой системы. Попытки методистов усовершенствовать приёмы преподавания хотя и приводят к частным успехам, однако не меняют общего положения дела, так как они заранее ограничены рамками принятого содержания.

Представляется, что в основе критического анализа принятой программы по арифметике должны лежать следующие положения:

Понятие числа не тождественно понятию о количественной характеристике объектов;

Число не является исходной формой выражения количественных отношений.

Приведём обоснование этих положений. Общеизвестно, что современная математика(в частности, алгебра) изучает такие моменты количественных отношений, которые не имеют числовой оболочки. Также хорошо известно, что некоторые количественные отношения вполне выразимы без чисел и до чисел, например, в отрезках, объёмах и т.д.(отношение «больше», «меньше», «равно»). Изложение исходных математических понятий в современных руководствах осуществляется в такой символике, которая не предполагает обязательного выражения объектов числами. Так, в книге Е.Г.Гонина «Теоретическая арифметика» основные математические объекты с самого начала обозначаются буквами и особыми знаками. Характерно, что те или иные виды чисел и числовые зависимости приводятся лишь как примеры, иллюстрации свойств множеств, а не как их единственно возможная и единственно существующая фора выражения. Примечательно, что многие иллюстрации отдельных математических определений даются в графической форме, через соотношение отрезков, площадей. Все основные свойства множеств и величин можно вывести и обосновать без привлечения числовых систем; более того последние сами получают обоснование на основе общематематических понятий.

В свою очередь многочисленные наблюдения психологов и педагогов показывают, что количественные представления возникают у детей задолго до появления у них знаний о числах и приёмах оперирования ими. Правда, есть тенденция относить эти представления к категории «доматематических образований» (что вполне естественно для традиционных методик, отождествляющих количественную характеристику объекта с числом), однако это не меняет существенной функции в общей ориентировке ребёнка в свойствах вещей. И порой случается, что глубина этих якобы «доматематических образований» более существенна для развития собственно математического мышления ребёнка, чем тонкостей вычислительной техники и умение находить чисто числовые зависимости. Примечательно, что академик А.Н.Колмогоров, характеризуя особенности математического творчества, специально отмечает следующее обстоятельство: «В основе большинства математических открытий лежит какая-либо простая идея: наглядное геометрическое построение, новое элементарное неравенство и т.п. Нужно только применить надлежащим образом эту простую идею к решению задачи, которая с первого взгляда кажется недоступной(12-с.17).

В настоящее время целесообразны самые различные идеи относительно структуры и способов построения новой программы. К работе по её конструированию необходимо привлечь математиков, психологов, логиков, методистов. Но во всех конкретных вариантах она, как представляется, должна удовлетворять следующим требованиям:

Преодолевать существующий разрыв между содержанием математики в начальной и средней школе;

Давать систему знаний об основных закономерностях количественных отношений объективного мира; при этом свойства чисел как особой формы выражения количества, должны стать специальным, но не основным разделом программы;

Прививать детям приёмы математического мышления, а не только навыки вычислений: это предполагает построение такой системы задач, в основе которой лежит углубление в сферу зависимостей реальных величин (связь математики с физикой, химией, биологией и другими науками, изучающими конкретные величины);

Решительно упрощать всю технику вычисления, сводя до минимума ту работу, которую нельзя выполнить без соответствующих таблиц, справочников, других подсобных средств.

Смысл этих требований ясен: в начальной школе возможно преподавать математику как науку о закономерностях количественных отношений, о зависимостях величин; техника вычислений и элементы теории чисел должны стать особым и частным разделом программы. Опыт конструирования новой программы по математике и её экспериментальная проверка, проводимая с конца 1960 года, позволяют уже в настоящее время говорить о возможности введения в школу, начиная с 1 класса систематического курса математики, дающего знания о количественных отношениях и зависимостях величин в алгебраической форме.

1.2.ПСИХОЛОГИЧЕСКИЕ ОСНОАВ ВВЕДЕНИЯ АЛГЕБРАИЧЕСКИХ ПОНЯТИЙ В НАЧАЛЬНОЙ ШКОЛЕ.

В последнее время при модернизации программ особое значение придают подведению теоретико-множественного фундамента под школьный курс (эта тенденция проявляется и у нас, и за рубежом). Реализация этой тенденции в преподавании (особенно в начальных классах, как это наблюдается, например, в американской школе неизбежно поставит ряд трудных вопросов перед детской и педагогической психологий и перед дидактикой, ибо сейчас почти нет исследований, раскрывающих особенности усвоения ребенком смысла множества (в отличие от усвоения счета и числа, которое исследовалось весьма многосторонне).

Логические и психологические исследования последних лет (в особенности работы Ж.Пиаже) вскрыли связь некоторых механизмов детского мышления с общематематическими понятиями. Ниже специально рассматриваются особенности этой связи и их значение для построения математики как учебного предмета (при этом речь идет о теоретической стороне дела, а не о каком-либо частном варианте программы).

Натуральное число является фундаментальным понятием математики на протяжении её истории; весьма существенную роль оно играет во всех областях производства, техники, повседневной жизни. Это позволяет математикам- теоретикам отводить ему особое место среди других понятий математики. В разной форме высказываются положения о том, что понятие натурального числа - исходная ступень математической абстракции, что оно является основой для построения большинства математических дисциплин.

Выбор начальных элементов математики как учебного предмета по существу реализует эти общие положения. При этом предполагается, что знакомясь с числом, ребёнок одновременно раскрывает для себя исходные особенности количественных отношений. Счёт и число- основа всего последующего усвоения математики в школе.

Однако есть основания полагать, что эти положения, справедливо выделяя особое и фундаментальное значение числа, вместе с тем неадекватно выражают его связь с другими математическими понятиями, неточно оценивают место и роль числа в процессе усвоения математики. Из-за этого обстоятельства, в частности проистекают некоторые существенные недостатки принятых программ, методик и учебников по математике. Необходимо специально рассмотреть действительную связь понятия о числе с другими понятиями.

Многие общематематические понятия, и в частности понятия соотношения эквивалентности и порядка, систематически рассматриваются в математике независимо от числовой формы. Эти понятия не теряют своего независимого характера на их основе можно описывать и изучать частный предмет - разнее числовые системы, понятия, о которых сами по себе не покрывают смысла и значения исходных определений. Причём в истории математической науки общие понятия развивались именно в той мере, в какой «алгебраические операции», известный пример которых доставляют четыре действия арифметики, стали применяться к элементам совершенно не «числового» характера.

В последнее время делаются попытки развернуть в преподавании этап введения ребёнка в математику. Эта тенденция находит своё выражение в методических руководствах, а также в некоторых экспериментальных учебниках. Так в одном американском учебнике, предназначенном для обучения детей 6-7лет, на первых страницах вводятся задания и упражнения, специально тренирующие детей в установлении тождественности предметных групп. Детям показывается приём соединения множеств,- при этом вводится соответствующая математическая символика. Работа с числами опирается на элементарные сведения о множествах. Можно по-разному оценивать содержание конкретных попыток реализации этой тенденции, но сама она вполне правомерна и перспективна.

На первый взгляд понятия «отношение», «структура», «законы композиции» и другие имеющиеся сложные математические определения, не могут быть связаны с формированием математических представлений у маленьких детей. Конечно, весь подлинный и отвлечённый смысл этих понятий и их место в аксиоматическом построении математики как науки есть объект усвоения уже хорошо развитой и «натренированной» в математике головы. Однако некоторые свойства вещей, фиксируемые этими понятиями, так или иначе проступают для ребёнка уже сравнительно рано: на это имеются конкретные психологические данные.

Прежде всего следует иметь в виду, что от момента рождения до 7-10 лет у ребёнка возникают и формируются сложнейшие системы общих представлений об окружающем мире и закладывается фундамент содержательно- предметного мышления. Причём на сравнительно узком эмпирическом материале дети выделяют общие схемы ориентации в пространственно- временных и причинно- следственных зависимостях вещей. Эти схемы служат своеобразным каркасом той «системы координат», внутри которой ребёнок начинает всё глубже овладевать разными свойствами многообразного мира. Конечно, эти общие схемы мало осознаны, и в малой степени могут быть выражены самим ребёнком в форме отвлечённого суждения. Они, говоря образно, являются интуитивной формой организации поведения ребёнка (хотя, конечно, всё более и более отображаются и в суждениях).

В последние десятилетия особенно интенсивно вопросы формирования интеллекта детей и возникновения у них общих представлений о действительности, времени и пространстве изучались известным швейцарским психологом Ж.Пиаже и его сотрудниками. Некоторые его работы имеют прямое отношение к проблемам развития математического мышления ребёнка, и поэтому нам важно рассмотреть их применительно к вопросам конструирования учебной программы.

В одной из своих последних книг(17) Ж.Пиаже приводит экспериментальные данные о генезисе и формировании у детей (до 12-14лет) таких элементарных логических структур, как классификация и сериация. Классификация предполагает выполнение операции включения (например А+А1=В) и операции, ей обратной (В- А1=А). сериация- это упорядочение предметов в систематические ряды (так, палочки разной длины можно расположить в ряд, каждый член которого больше всех предыдущих и меньше всех последующих).

Анализируя становление классификации, Ж.Пиаже показывает, как от исходной формы, от создания «фигурной совокупности», основанной лишь на пространственной близости объектов, дети переходят к классификации, основанной уже на отношении сходства («нефигурные совокупности»), а затем к самой сложной форме- к включению классов, обусловленному связью между объёмом и содержанием понятия. Автор специально рассматривает вопрос о формировании классификации не только по одному, но и по двум- трём признакам, о формировании у детей умения изменять основание классификации при добавлении новых элементов.

Эти исследования преследовали вполне определённую цель- выявить закономерности формирования операторных структур ума и прежде всего такого их конституирующего свойства как обратимость, т.е. способность ума двигаться в прямом и обратном направлении. Обратимость имеет место тогда, когда «операции и действия могут развертываться в двух направлениях, и понимание одного из этих направлений вызывает ipso facto (в силу самого факта) понимание другого(17-стр.15).

Обратимость, согласно Ж.Пиаже, представляет фундаментальный закон композиции, свойственный уму. Она имеет две взаимодополняющие и несводимые формы: обращение (инверсия или отрицание) и взаимность. Обращение имеет место, например, в том случае, когда пространственное перемещение предмета из А в В можно аннулировать, переводя обратно предмет из В в А, что в итоге эквивалентно нулевому преобразованию (произведение операции на обратную есть тождественная операция, или нулевое преобразование).

Взаимность (или компенсация) предполагает тот случай, когда, например, при перемещении предмета из А в В предмет так и остаётся в В, но ребенок сам перемещается из А в В и воспроизводит начальное положение, когда предмет находился против его тела. Движение предмета здесь не аннулировано, но оно компенсировалось путём соответствующего перемещения собственного тела - и это уже другая форма преобразования, нежели обращение (17-стр.16). Ж.Пиаже считает, что психологическое исследование развития арифметических и геометрических операций в сознании ребёнка (особенно тех логических операций, которые осуществляет в них предварительные условия) позволяет точно соотнести операторные структуры мышления со структурами алгебраическими, структурами порядка и топологическими(17-стр.17). так алгебраическая структура («группа») соответствует операторным механизмам ума, подчиняющимся одной из форм обратимости- инверсии(отрицанию). Группа имеет четыре элементарных свойства: произведению двух элементов группы также даёт элемент группы; прямой операции соответствует одна и только одна обратная; существует операция тождества; последовательные композиции ассоциативны. На языке интеллектуальных действий это означает:

Координация двух систем действия составляет новую схему, присоединяемую к предыдущим;

Операция может развиваться в двух направлениях;

При возвращении к исходной точке мы находим её неизменной;

К одной и той же точке можно прийти разными путями, причём сама точка считается неизменной.

Рассмотрим основные положения, сформулированные Ж.Пиаже, применительно к вопросам построения учебной программы. Прежде всего, исследования Ж.Пиаже показывают, сто в период дошкольного и школьного детства у ребёнка формируются такие операторные структуры мышления, которые позволяют ему оценивать фундаментальные характеристики классов объектов и их положений. Причём уже на стадии конкретных операций (с 7-лет) интеллект ребёнка приобретает свойство обратимости, что исключительно важно для понимания теоретического содержания учебных предметов, в частности математики. Эти данные говорят о том, что традиционная психология и педагогика не учитывали в достаточной мере сложного и ёмкого характера тех стадий умственного развития ребёнка, которые связаны с периодом от 2 до 7 и от 7 до 11лет. Рассмотрение результатов, полученных Пиаже, позволяет сделать ряд существенных выводов применительно к конструированию учебной программы по математике. Прежде всего фактические данные о формировании интеллекта ребёнка с 2х до 11лет говорят о том, что ему в это время не только не «чужды» свойства объектов, описываемые посредством математических понятий «структура- отношение», но они сами органически входят в мышление ребёнка.

Традиционные программы не учитывают этого обстоятельства. Поэтому они не реализуют многих возможностей, таящихся в процессе интеллектуального развития ребенка. К 7- годам у детей уже в достаточной мере развит план мыслительных действий, и путём обучения по соответствующей программе, в которой свойства математических структур даны «явно» и детям даются средства их анализа, можно быстрее подвести детей к уровню «формальных» операций, чем в те сроки, в которые это осуществляется при «самостоятельном» открытии этих свойств. При этом важно учитывать следующее обстоятельство. Есть основания полагать, что особенности мышления на уровне конкретных операций, приуроченном Ж.Пиаже к 7-11годам, сами неразрывно связаны с формами организации обучения, свойственными традиционной начальной школе.

Таким образом, в настоящее время имеются фактические данные, показывающие тесную связь структур детского мышления и общеалгебраических структур. Наличие этой связи открывает принципиальные возможности для построения учебного предмета, развёртывающегося по схеме «от простых структур- к сложным сочетаниям». Указанный способ может быть мощным рычагом формирования у детей такого мышления, которое опирается на достаточно прочный понятийный фундамент.

1.3.ПРОБЛЕМА ПРОИСХОЖДЕНИЯ АЛГЕБРАИЧЕСКИХ ПОНЯТИЙ И ЕЁ ЗНАЧЕНИЕ ДЛЯ ПОСТРОЕНИЯ УЧЕБНОГО ПРЕДМЕТА.

Разделение школьного курса математики на алгебру и арифметику условное. Переход происходит постепенно. Одним из центральных понятий начального курса является понятие натурального числа. Оно трактуется как количественная характеристика класса эквивалентных множеств. Раскрывается понятие на конкретной основе в результате оперирования множества и измерения величин. Необходимо проанализировать содержание понятия «величина». Правда, с этим термином связывается другой - «измерение». В общем употреблении термин величина связан с понятиями «равно», «больше», «меньше», которые описывают самые различные качества. Множество предметов только тогда претворяется в величину, когда устанавливаются критерии, позволяющие установить относительно любых его элементов А иВ, будет ли А равно В, больше В или меньше В. При этом для любых двух элементов А и В имеет место одно и только одно из соотношений: А=В, А В, А В.

В.Ф.Коган выделяет следующие восемь основных свойств понятий «равно», «больше», «меньше».

1) имеет место по крайней мере одно из соотношений: А=В, А В, А В;

2) если имеет место соотношение А=В, т не имеет места соотношение А В;

3) если имеет место А=В, то не имеет места соотношение А В;

4) если А=В и В=С, то А=С;

5) если А В и В С, то А С;

6) если А С и В С, то А С;

7) равенство есть отношение обратимое: А=В В=А;

8) равенство есть соотношение возвратное: каков бы ни был элемент А рассматриваемого множества, А=А.

«Устанавливая критерии сравнения, мы претворяем множество в величину»,- писал В.Ф.Коган. В практике величиной обычно обозначают как бы не самое множество элементов, а новое понятие, введенное для различения критериев сравнения (наименование величины». Так возникают понятия «объём» , «вес», «длина» и т.д. «При этом для математика величина вполне определена, когда указаны множество элементов и критерии сравнения»,- отмечал В.Ф.Коган.

В качестве важнейшего примера математической величины этот автор рассматривает натуральный ряд чисел. С точки зрения такого критерия сравнения, как положение, занимаемое числами в ряду (занимает одно место, следует за…, предшествует…), этот ряд удовлетворяет постулатам и поэтому представляет собой величину. Работая с величинами(отдельные из значения целесообразно фиксировать буквами), можно производить сложную систему преобразований, устанавливая зависимость их свойств, переходя от равенства к неравенству, выполняя сложение и вычитание. Натуральные и действительные числа одинаково прочно связаны с величинами и некоторыми их существенными особенностями. Нельзя ли эти и другие свойства сделать предметом специального изучения ребёнка ещё до того, как вводится числовая форма описания отношения величин? Они могут послужить предпосылками для последующего развёрнутого введения числа и его разных видов, в частности для пропедевтики дробей, понятий координат, функции и других понятий уже в младших классах. Что может быть содержанием этого начального раздела? Это знакомство с физическими объектами, критериями их сравнения, выделяющими величину как предмет математического рассмотрения, знакомство со способами сравнения и знаковыми средствами фиксации его результатов, с приёмами анализа общих свойств величин. Необходим такой начальный раздел курса, который знакомил бы детей с основными алгебраическими понятиями(до введения числа). Каковы же основные узловые темы такой программы?

Тема 1. Уравнивание и комплектование объектов (по длине, объёму, весу, составу частей и других параметрам).

Тема 2. Сравнение объектов и фиксация его результатов формулой равенства- неравенства.

Задачи на сравнение объектов и знаковое обозначение результатов этого действия;

Словесная фиксация результатов сравнения (термины «больше», «меньше», «равно»).

Письменные знаки

Обозначение результатов сравнения рисунком;

Обозначение сравниваемых объектов буквами.

Тема 3. Свойства равенства и неравенства.

Тема 4. Операция сложения (вычитания).

Тема 5. Переход от неравенства типа А В к равенству через операцию сложения(вычитания).

Тема 6. Сложение- вычитание равенств – неравенств.

При правильном планировании уроков, при усовершенствовании методики преподавания и удачном выборе дидактических пособий этот материал может быть полноценно усвоен за три месяца.

Далее дети знакомятся со способами получения числа, выражающим отношение какого- либо объекта как целого и его части. Есть линия, реализуемая уже в 1 классе - перенесение на числа (целые) основных свойств величины и операции сложения. В частности, работая на числовом луче, дети могут быстро претворить последовательность чисел в величину. Таким образом, обращение с числовым рядом как с величиной позволяет по-новому формировать сами навыки сложения и вычитания, и затем умножения - деления.

2.1. ОБУЧЕНИЕ В НАЧАЛЬНОЙ ШКОЛЕ С ТОЧКИ ЗРЕНИЯ ПОТРЕБНОСТЕЙ СРЕДНЕЙ ШКОЛЫ.

Как известно, при изучении математики в 5 классе существенная часть времени отводится на повторение того, что дети должны были усвоить в начальной школе. Это повторение практически во всех учебниках занимает полторы учебной четверти. Учителя математики средней школы недовольны подготовкой выпускников начальной школы. В чём же причина такого положения? Для этого были проанализированы наиболее известные сегодня учебники математики начальной школы: это учебники авторов М.И Моро, И.И. Аргинской, Н.Б Истоминой, Л.Г.Петерсон, В.В.Давыдова, Б.П.Гейдмана.

Анализ этих учебников выявил несколько негативных моментов, в большей или меньшей степени присутствующих в каждом из них и отрицательно действующих на дальнейшее обучение. Прежде всего это то, что усвоение материала в них в большей мере основано на заучивании. Ярким примером этого служит заучивание таблицы умножения. В начальной школе её запоминанию уделяется много сил и времени. Но за время летних каникул дети её забывают. Причина такого быстрого забывания в механическом заучивании. Исследования Л.С. Выготского показали, что осмысленное запоминание гораздо эффективно, чем механическое, а проведённые эксперименты убедительно доказывают, что материал попадает в долговременную память только если он запомнен в результате работы, соответствующей этому материалу. При изучении материала в начальной школе опора делается на предметные действия и иллюстративную наглядность, что ведёт к формированию эмпирического мышления. Конечно, без подобной наглядности вряд ли можно совсем обойтись в начальной школею но она должна служить лишь иллюстрацией того или иного факта, а не основой для формирования понятия. Применение иллюстративной наглядности и предметных действий в учебниках нередко приводит к тому, что «размывается» само понятие. Например, в методике математики М.И.Моро говорится, что детям приходится выполнять деление, раскладывая предметы на кучки или делая рисунок на протяжении 30 уроков. За подобными действиями теряется сущность операции деления как действия, обратного умножению в результате деления усваивается с наибольшим трудом и значительно хуже, чем другие арифметические действия.

При обучении математике в начальной школе нигде не идёт речь о доказательстве каких- либо утверждений. Между тем, помня о том, какую трудность будет вызывать обучение доказательству в средней школе, начинать готовить к этому нужно уже в начальных классах. Причём сделать это можно на вполне доступном для младших школьников материале. Таким материалом,например, может служить правило деления числа на 1, нуля на число и числа на само себя. Дети вполне в состоянии доказать их, используя определение деления и соответствующие правила умножения.

Материал начальной школы также допускает и пропедевтику алгебры- работу с буквами и буквенными выражениями. Большинство учебников избегает использования букв. В результате четыре года дети работают практически только с числами, после чего, конечно, очень трудно приучаться к работе с буквами. однако обеспечить пропедевтику такой работы, научить детей подстановке числа вместо буквы в буквенном выражении можно уже в начальной школе. Это замечательно сделано, например, в учебнике Л.Г.Петерсон. С 1 класса буквенная символика вводится наряду с числами, а в некоторых случаях - опережая их. Все правила и выводы сопровождаются буквенным выражением. Например, урок 16 (1класс 2часть) по теме «Нуль» знакомит детей с вычитание нуля из числа и числа из самого себя и делает вывод следующей записью: а -0=а а-а=0

Урок 30 по теме «Задачи на сравнение» 1класс включает в себя работу с упражнениями на сравнение вида: а*а-3 в+4*в+5 с+0* с-0 д-1*д-2

Эти упражнения заставляют ребенка мыслить и искать доказательство выбранного решения.

2.2. СРАВНЕНИЕ (ПРОТИВОПОСТАВЛЕНИЕ) ПОНЯТИЙ НА УРОКАХ МАТЕМАТИКИ.

Действующая программа предусматривает изучение в 1классе лишь двух действий первой ступени_ сложения и вычитания. Ограничение первого года обучения лишь двумя действиями есть, по существу, отход от того, что было уже достигнуто в учебниках предшествовавших ныне действующим: ни один учитель никогда не жаловался тогда на то, что умножение и деление, скажем в пределах 20 непосильно для первоклассников. Достойно внимания ещё и то, что в школах других стран, где обучение начинается с 6лет, к первому учебному году относят начальное знакомство со всеми четырьмя действиями математики. Математика опирается прежде всего на четыре действия, и чем раньше они будут включены в практику мышления школьника, тем устойчивее и надежнее будет последующее развертывание курса математики.

В первых вариантах учебника М.И Моро для 1 класса предусматривалось умножение и деление. Однако авторы настойчиво держались за одну «новинку»- охват в 1классе всех случаев сложения и вычитания в пределах 100. Но, поскольку времени на изучение такого расширенного объема сведений не хватило, было решено сдвинуть умножение и деление полностью на следующий год обучения. Итак, увлечение линейностью программы, т.е. чисто количественным расширением знанием (те же самые действия, но с большими числами), заняло то время, которое ранее отводилось на качественное углубление знаний (изучение всех четырех действий в пределах двух десятков). Изучение умножения и деления уже в 1классе означает качественный скачок мышления, поскольку это позволяет освоить свёрнутые мыслительные процессы.

По традиции, раньше выделялось в особую тему изучение действий сложения и вычитания в пределах 20. Необходимость этого подхода в систематизации знаний видна даже из логического анализа вопроса: дело в том, что полная таблица сложения однозначных чисел развёртывается в пределах двух десятков (0+1=1… 9+9=18). Таким образом, числа в пределах 20 образуют в своих внутренних связях завершённую систему отношений; отсюда понятно целесообразность сохранения «20» в виде второй целостной темы (первая такая тема- действия в пределах первого десятка). Обсуждаемый случай- именно тот, когда концентричность (сохранение второго десятка в качестве особой темы) оказывается более выгодной, чем линейность (растворение второго десятка в теме «Сотня»).

В учебнике М.И Моро изучение первого десятка разделено на два изолированных раздела: сначала изучается состав чисел первого десятка, а в следующей теме рассматриваются действия в пределах десяти. Существуют экспериментальные учебники, где совместное изучение нумерации состава чисел и действий осуществляется в пределах 10 сразу в одном разделе (Эрдниев П.М.).

На первых занятиях учитель должен поставить перед собой цель научить школьника применять пары понятий, содержание которых раскрывается в процессе составления соответствующих предложений с этими словами: больше- меньше, длиннее- короче, выше- ниже, тяжелее- легче, толще- тоньше, правее- левее, дальше- ближе и т.д. При работе над парами понятий важно использовать и наблюдения детей. Обучение процессу сравнения можно сделать более интересным, вводя так называемые табличные упражнения. Здесь разъясняется смысл понятий «столбец» , «строка». Вводится понятие левый столбец и правый столбец, верхняя строка и нижняя строка. Вместе с детьми показываем смысловое толкование этих понятий. Подобные упражнения постепенно приучают детей к пространственной ориентировке и имеют важное значение при изучении в последствии координатного метода математики. Большое значение для первых уроков имеет работа над числовым рядом. Рост числового ряда прибавлением по единице удобно иллюстрировать перемещением вправо по числовому лучу. Если знак (+) связывается с перемещением по числовому лучу вправо на единицу, то знак (-) связывается с обратным перемещением влево на единицу. (Поэтому оба знака показываем одновременно на одном уроке). Работая над числовым рядом, вводим понятия: начало числового ряда(число нуль) представляет левый конец луча; числу 1 соответствует единичный отрезок, который надо изобразить отдельно от числового ряда. Дети работают в пределах трех с числовым лучом. Выделяем два соседних числа 2 и 3. Переходя от числа 2 к числу 3, дети рассуждают так: «За числом 2 следует число 3». Переходя от числа 3 к числу 2, они говорят: «Перед числом 3 идёт число 2» или «Число 2 предшествует числу 3». Такой метод позволяет определить место данного числа по отношению как к предыдущему, так и к последующему числу; уместно тут же обратить внимание на относительность положения числа, например, число 3 одновременно является как последующим(за числом 2), так и предыдущим (перед числом 4). Указанные переходы по числовому ряду надо связать с соответствующими арифметическими действиями. Например, фраза «За число 2 следует число3» изображается символически так: 2+1=3; однако психологически выгодно создать противоположную связь: «Перед числом 3 идёт число 2» и запись: 3-1=2. Чтобы добиться понимания места какого- либо числа в числовом ряду, следует предлагать парные вопросы:

1)За каким числом следует число 3? Перед каким числом расположено число 2?

2)какое число следует за числом 2? Какое число идёт перед числом 3? И т.д.

Работу с числовым рядом удобно сочетать со сравнением чисел по величине, а также со сравнением положения чисел на числовой прямой. Постепенно вырабатываются связи суждений геометрического характера: число4 находится на числовой прямой правее числа 3; значит 4 больше 3. И наоборот: число 3 находится левее числа 4, значит число 3 меньше числа 4. Так устанавливается связь между парами понятий: правее- больше, левее- меньше.

Из выше изложенного мы видим черту укрупненного усвоения знаний: весь набор понятий, связанных со сложением и вычитанием, предлагается совместно, в непрерывных переходах друг в друга. Опыт обучения показывает преимущества одновременного введения пар взаимно противоположных понятий, начиная с самых первых уроков. Так,например, одновременное употребление трех глаголов: «прибавить (к 2 прибавить 1), «сложить» (число 2 сложить с числом 1), которые изображаются символически одинаково (2+1=3), помогает детям усвоить сходство, близость этих слов по смыслу(подобные рассуждения можно произвести относительно слов «отнять», «вычесть», «уменьшить».

Многолетние испытания показали преимущества монографического изучения чисел первого десятка. Каждое очередное число при этом подвергается многостороннему анализу, с перебором всех возможных вариантов его образования; в пределах этого числа выполняются все возможные действия, повторяется «вся математика», используются все допустимые грамматические формы выражения зависимости между числами. Разумеется, при этой системе изучения в связи с охватом последующих чисел повторяются ранее изученные примеры, т.е. расширение числового ряда осуществляется с постоянным повторением ранее рассмотренных сочетаний чисел и разновидностей простых задач.

2.3. СОВМЕСТНОЕ ИЗУЧЕНИЕ СЛОЖЕНИЯ И ВЫЧИТАНИЯ, УМНОЖЕНИЯ И ДЕЛЕНИЯ.

В методике начальной математики упражнения на эти две операции обычно рассматриваются раздельно. Но одновременное изучение двуединой операции «сложение- разложение на слагаемые» является более предпочтительным. Такую работу можно построить следующим образом. Пусть дети решили задачу на сложение: «К 3палочкам прибавить 1палочку- получится 4палочки». Вслед за ней сразу же ставим вопрос: «Из каких чисел состоит число 4?» 4палочки состоят из 3 палочек (ребёнок отсчитывает 3палочки) и 1палочки (отделяет ещё 1палочку). Исходным упражнением может быть и разложение числа. Учитель задает вопрос: «Из каких чисел состоит число 5?»(число 5 состоит из 3 и 2). И тотчас же предлагается вопрос про те же числа: «Сколько получится, если к 3 прибавить 2?»(к 3 прибавить 2 получится 5). Для этой же цели полезно практиковать чтение примеров в двух направлениях: 5+2=7. К пяти прибавить два получится семь. (читаем слева направо).7 состоит из слагаемых 2 и 5.(читаем справа налево). Словесное противопоставление полезно сопровождать такими упражнениями на классных счётах, которые позволяют видеть конкретное содержание соответствующих операций. Вычисление на счётах незаменимы как средство визуализации действий над числами, причём величина числа в пределах 10 здесь ассоциируется с длиной совокупности косточек на одной проволоке(эта длина воспринимается учеником зрительно. Так при решении примера на сложение (5+2=7) ученик сначала отсчитывал на счётах 5 косточек, затем к ним присчитывал 2 и после этого объявлял сумму: «К 5 прибавить 2- получится 7» (название полученного числа 7 при этом ученик устанавливает путём пересчёта новой совокупности: 1-2-3-4-5-6-7).

Ученик: К 5 прибавить 2 -получится 7.

Учитель: Покажи, из каких слагаемых состоит число 7?

Ученик отделяет 2 косточки вправо. Число 7- это 2 и 5. Выполняя данные упражнения, целесообразно употреблять с самого начала понятие «первое слагаемое» (5), «второе слагаемое» (2), «сумма» (7). Предлагаются задания следующих видов:

а) сумма двух слагаемых равна 7, найди их;

в) из каких слагаемых состоит число 7;

в) разложите сумму 7 на 2 слагаемых, 3, и т.п.

Усвоение такого важного алгебраического понятия, как переместительный закон сложения, требует разнообразных упражнений, основанных вначале на практических манипуляциях с предметами.

Учитель: Возьмите в левую руку 3 палочки, а в правую- 2. Сколько всего палочек?

Ученик: Всего стало 5 палочек.

Учитель: Как подробнее сказать об этом?

Ученик: К 2 палочкам прибавить 2 – будет 5 палочек.

Учитель: Составьте этот пример из разрезных цифр. (ученик составляет пример из цифр).

Учитель: А теперь поменяйте местами палочки: из левой переложите в правую, а из правой- в левую. Сколько теперь палочек в двух руках вместе?

Ученик: Всего в двух руках было 5, и сейчас получилось снова 5.

Учитель: Почему так получилось?

Ученик: Потому что мы никуда не откладывали и не добавляли палочки. Сколько было, столько и осталось.

Переместительный закон усваивается также в упражнениях на разложение числа на слагаемые. Когда вводить переместительный закон? Главная цель обучения сложению- уже в пределах первого десятка- постоянно подчёркивать роль переместительного закона в упражнениях. Пусть дети отсчитывают 6 палочек, затем к ним прибавляют 3 палочки и пересчётом(семь- восемь- девять) устанавливают сумму: 6 да 3 будет 9. Предлагаем сразу новый пример: 3+6: новую сумму можно установить путем пересчета, но постепенно и целенаправленно следует формировать способ решения на высшем коде, т.е. логически, без пересчёта. Если 6 да 3 будет 9 (ответ пересчитан), то 3 да 6 (без пересчёта) будет 9.

Л.Г.Петерсон вводит такой способ уже на 13 уроке, где дети решают четыре выражения в буквенной символике (Т+К=Ф К+Т=Ф Ф-Т=К Ф-К=Т), а затем в числовой форме: 2+1=3 1+2=3 3-2=1 3-1+2.

Составление четверки примеров- это доступное детям средство укрупнения знаний. Мы видим, что характеристика операции сложения не должна пройти эпизодически, а должна стать основным логическим средством упрочения верных числовых ассоциаций. Главное свойство сложения- переместительность слагаемых- должно рассматриваться постоянно в связи с накоплением в памяти все новых табличных результатов. Мы видим: взаимосвязь более сложных вычислительных или логических операций, посредством которых выполняется пара «сложных операций». Явное противопоставление сложных понятий основано на неявном противопоставлении более простых понятий.

Первоначальное изучение умножения и деления целесообразно осуществлять в следующей последовательности трех циклов задач(по 3 задачи в каждом цикле):

1 а), б) умножение при постоянном множимом и деление по содержанию (совместно); в) деление на равные части.

2 а), б) уменьшение и увеличение числа в несколько раз (совместно), в) кратное сравнение;

3 а), б) нахождение одной части числа и числа по величине одной его части (совместно) в) решение задачи «Какую часть составляет одно число от другого?». Одновременное изучение умножения и деления по содержанию. На 2-3 уроках, посвящённых умножению, выясняется смысл понятия умножения как свёрнутого сложения равных слагаемых. Обычно учащимся показывается запись по замене сложения умножением:2+2+2+2=8 2*4=8 Здесь связь между сложением и умножением. Уместно предложить сразу упражнение, рассчитанное на появление обратной связи «умножение- сложение». Рассматривая эту запись, ученик должен понять, что требуется число 2 повторять слагаемым столько раз, сколько показывает множитель в примере 2*4=8. Сочетание обоих видов упражнения есть одно из важных условий, обеспечивающих сознательное усвоение понятия «умножение». Очень важно показать к каждому из соответствующих случаев умножения соответствующий случай деления. В дальнейшем умножение и деление по содержанию выгодно рассматривать совместно.

При введении понятия деления необходимо вспомнить соответствующие случаи умножения, чтобы оттолкнувшись от них, создать понятие о новом действии, обратном умножению. Стало быть, понятие «умножение» приобретает богатое содержание, оно не только результат сложения равных слагаемых («обобщение сложения»), но и основа, исходный момент деления, которое, в свою очередь представляет «свёрнутое вычитание», заменяющее последовательное «вычитание по 2». Смысл умножения постигается не столько при самом умножении, сколько при постоянных переходах между умножением и делением, так как деление есть завуалированное, «изменённое» умножение. Все логические операции, подкрепляемые практической деятельностью, должны быть хорошо продуманы. Результатом работы будут таблицы умножения и деления:

По 2*2=4 4:по 2 =2

2*3=6 6:по 2=3

2*4=8 8:по 2=4 и т.д.

Таблица умножения строится по постоянному 1множителю, а таблица деления- по постоянному делителю. Изучение деления на равные части вводится после изучения умножения и деления на 2. Даётся задача: «Четыре ученика принесли по 2 тетради. Сколько всего тетрадей принесли?» выполняя практическое действие, мы собираем тетради (по 2 тетради взять 4раза). Составим обратную задачу: «8 тетрадей раздали по 2 тетради каждому ученику». Получится 4. Запись появляется по 2т.*4=8т., 8т.: по 2т.=4уч. На первых порах полезно подробно записывать наименования. Теперь составляем 3задачу: «8тетрадей надо раздать поровну 4ученикам. По сколько тетрадей достанется каждому?» вначале деление на равные части также следует демонстрировать на предметах. Стало быть, понятие «умножение» приобретает богатое содержание: оно не только результат сложения равных слагаемых («обобщение сложения»), но и основа, исходный момент деления, которое в свою очередь представляет свёрнутое вычитание, заменяющее последовательное «вычитание по 2». Очень удачно в этом случае построено объяснение в учебниках математики Л.Г.Петерсон и Н.Б.Истоминой. новое понятие вводится в обучение деятельностным методом, т.е. дети сами «открывают» его содержание, а учитель направляет их исследовательскую деятельность и знакомит с общепринятой терминологией и символикой. Вначале дети повторяют смысл умножения, составляют по рисунку произведение 2*4=8. Изучение действий деления мотивируется повседневной практической деятельностью детей. Учитель спрашивает, приходилось ли в жизни делить что-то поровну, и предлагает задачу: «Надо разделить 36конфет поровну на четверых. По сколько дать каждому?» затруднение, которое возникает в связи с ответом на вопрос задачи, мотивирует проведение исследования с помощью предметных моделей. У каждого на партах заготовлено 36 предметов (пуговиц, фигур, жетонов и т.д.). Их раскладывают на 4 равные по количеству кучки и т.д. Учитель показывает запись _- разделить на равные части- это значит найти число предметов в каждой части. Выполняя ряд упражнений, дети приходят к выводу, что операция деления обратна операции умножения. При делении орехов на 4 получается такое число 2, которое при умножении на 4 даёт нам 8. 8:4=2 2*4=8. О знаке детям можно сказать, что его используют в математике для обозначения предложений, выражающих одно и тоже (равносильное предложение). Выполняя упражнения на закрепление, дети выполняют рисунки и рисуют опорные схемы.

В конце урока делается вывод и проговариваются вслух и распространяются на общий случай деления- чтобы разделить число а на число в надо подобрать такое число с, которое при умножении на в даёт а:

А:В=С С*В=А и составляется опорный конспект. Важно донести до детей, что математические выражения, формулы позволяют выявить общие закономерности и установить аналогию совершенно различных на первый взгляд явлений. Осознание этого факта поможет учащимся в дальнейшем понять целесообразность математических обобщений, роль и место математики в системе наук.

ГЛАВА 3. ИССЛЕДОВАТЕЛЬСКАЯ РАБОТА ПО ИЗУЧЕНИЮ АЛГЕБРАИЧЕСКОГО МАТЕРИАЛА НА УРОКАХ МАТЕМАТИКИ В НАЧАЛЬНЫХ КЛАССАХ МОУ СОШ №72 С УГЛУБЛЕЕНЫМ ИЗУЧЕНИЕМ ОТДЕЛЬНЫХ ПРЕДМЕТОВ.

3.1. ОБОСНОВАНИЕ ИСПОЛЬЗОВАНИЯ ИННОВАЦИОННЫХ ТЕХНОЛОГИЙ (ТЕХНОЛОГИЯ УДЕ).

В своей работе успешно применяю технологию укрупнения дидактических единиц (УДЕ), разработанную П.Т.Эрдниевым. автор более 30 лет назад выдвинул научное понятие «дидактическая единица». Его система укрупнения дидактических единиц в начальной школе вооружает школьников алгоритмом творческого освоения учебной информации. Эта технология актуальна и перспективна, так как обладает силой дальнодействия, закладывает в ребенке черты интеллекта, способствует становлению активной личности.

П.М.Эрдниев выделяет четыре основных способа укрупнения дидактических единиц:

1)совместное и одновременное изучение взаимосвязанных действий, операций;

2)применение деформированных упражнений;

3)широкое использование метода обратной задачи;

4)усиление удельного веса творческих заданий.

Каждый из способов способствует актуализации резервов мышления. Первый способ - совместное изучение взаимосвязанных действий, операций- сложение- вычитание, умножение- деление. В первом классе, изучая первый десяток, дети знакомятся с примерами вида: 3+4=7 по технологии укрупнения дидактических единиц знакомлю с переместительным свойством сложения: 4+3=7 ответ одинаков, запись приобретает вид: 3+4= 7

Детям предлагаю примеры на вычитание, а запись имеет вид: 7 -3=4

4=3. Обобщаются и объединяются знания и записи сводятся вместе. Аналогично можно построить работу на умножение и деление. Например: 8+8+8+8+8=40 8*5=40 5*8=40 40:5=8 40:8=5

Дети приучаются различать противоположные понятия и операции при одновременном изучении сопряжённых действий. «Нервные привычки», по К.Д.Ушинскому, закрепляются у человека не отдельно, а парами, рядами, вереницами, группами. Такая подача материала создает условия для развития самостоятельности и инициативы детей.

Второй способ укрупнения дидактических единиц- метод деформированных упражнений, в которых искомым является не один, а несколько элементов. Например, в первом классе можно предложить задание, где нужно определить знак действия и неизвестный компонент:8 =2. В таких примерах ученик сначала подбирает знак действия на основе сравнения, а затем находит отсутствующий компонент. Решая такой пример, ребенок рассуждает так: 8 2, значит знак «минус».8 состоит из 2 и 6, значит пример 8-6=2. Так активизируется внимание, развивается мышление учащихся на основе решения логических цепочек.

Третий способ укрупнения дидактических единиц- решение прямой задачи и преобразование её в обратные и аналогичные. Решение задач в начальной школе имеет центральное значение для развития мышления учащихся: при решении дети знакомятся с зависимостью величин, с различными сторонами жизни, учатся думать, рассуждать, сравнивать. Обучая решению задач, необходимо учить детей составлять обратные задачи. В основе каждого способа лежит великий информационный закон живой природы - закон обратной связи. При работе над задачами выгодно пользоваться, когда в серии задач последующая отличается от предыдущей лишь каким-то одним элементом. В этом случае переход от одной задачи к другой облегчается, и информация, полученная при решении предыдущей задачи, помогает в поиске решения последующих задач. Особенно полезен этот приём слабым и медлительным детям. Например, задача на нахождение суммы, составим обратные ей задачи. «Отец дал Маше 11яблок, а мама добавила еще 5яблок. Сколько всего яблок дали Маше родители?»

  1. Проводим анализ по вопросам: «Что известно в задаче? Что нужно узнать?» Запись задачи кратко. Как узнать, сколько яблок дали Маше родители? (12+5=17)
  2. Составление обратной задачи, где неизвестным будет количество яблок, данных отцом. «Отец дал несколько яблок, а мама добавила ещё 5яблок. Всего у Маши стало 17яблок. Сколько яблок дал Маше отец?»
  3. Можно составить ещё одну обратную задачу, где неизвестным будет количество яблок, данных Маше мамой. «Отец дал Маше 12яблок, а мама добавила ещё несколько яблок. Всего у Маши стало 17яблок. Сколько яблок дала мама Маше?» (17-12=5). В тетрадях ведём краткие записи по всем 3задачам. Взаимосвязанные задачи сливаются в группу родственных задач как крупную единицу усвоения и образуют три задачи. Итак, главная технологическая новизна системы укрупнения дидактических единиц заключается в наличии заданий, по которым школьник упражняется в самостоятельном составлении обратных задач на основе анализа условия прямой задачи, выявление логической цепи.

Четвертый способ укрупнения- усиление удельного веса творческих заданий. Например, дается задание с «окошком»: +7-50=20. Дети ищут ответ методом подбора, но можно решить это задание, рассуждая по стрелке, используя обратную операцию: 20+59-7=63. Искомое число 63. Творческие задания должны присутствовать на каждом уроке. С помощью таких упражнений ребёнок приучается к самостоятельному продолжению мысли, к перестройке суждения, что имеет решающее значение в последующем для составления активного, творческого ума человека, столь ценного в своем проявлении в любой сфере трудовой деятельности.

3.2.ОБ ОПЫТЕ ОЗНАКОМЛЕНИЯ С АЛГЕБРАИЧЕСКИМИ ПОНЯТИЯМИ.

Уже в 1классе учу детей самостоятельно устанавливать признаки, по которым можно сравнивать те или иные предметы. Учитель показывает детям 2гири разного цвета. «По каким признакам их можно сравнивать?» Дети дают ответ: «Их можно сравнивать по весу, высоте, по донышку». Что же можно сказать?- они неравны (по весу, высоте). Как это выразить точнее?- чёрная гиря тяжелее, больше, толще. Что значит тяжелее?- Тяжелее, больше по весу. Аналогичная работа при наводящих вопросах проводится и по отношению к другим признакам. Вместе с учителем устанавливаем, что тяжелее- это больше по весу, «длиннее»- это больше по длине(росту, высоте) и т.д. заключением этой работы было выяснение того, что если можно найти признак, по которому предметы сравниваются, то они будут либо равными, либо неравными. Это можно записать особыми знаками «=» и «=». Л.Г.Петерсон очень удачно сопоставляет эти понятия, а уже потом знаки уточняются -меньше или больше. Дети очень охотно решают эти неравенства. Выполняем и обратные задания - по знакам «меньше» или «больше» подбираются разные предметы. При этом сразу возникает своеобразная задача- определение понятий «слева направо»- 5 меньше 10. Кроме этого, удачно получается записывать не только числами, но и разными фигурами, линиями. В этот период на этой основе вводится буквенная форма записи. Работая с разного рода заданиями, необходимо дать детям понятие, что сами по себе буквы результата сравнения не записывают- нужен связующий их знак. И лишь вся формула говорит об этом результате- сравнение веса, длины 2х предметов и более.

Работа по данной теме имеет первостепенное значение для развёртывания всего начального раздела математики, так как по существу связана с построением в деятельности ребёнка системы отношений, выделяющих величины как основу дальнейших преобразований. Буквенные формулы, заменяющие ряд предварительных способов записи, впервые превращают эти отношения в абстракцию, ибо сами буквы обозначают любые конкретные значения любых конкретных величин, а вся формула- любые, возможные отношения равенства или неравенства этих значений. Теперь, опираясь на формулы, можно изучать собственные свойства выделенных отношений, превращая их в особый предмет анализа.

  1. ДИАГНОСТИКА РЕЗУЛЬТАТОВ ОБУЧЕНИЯ МАТЕМАТИКЕ.

Значение диагностики велико, так как с её помощью устанавливается соответствие достижений ребенка обязательным требованиям к результатам обучения. Анализируя итоги, можно сделать выводы, какие изменения происходят с ребенком в процессе обучения, почему не удалось научить, что не учтено, как скорректировать процесс обучения, в какой помощи ученик нуждается. Инструментом диагностики могут служить тесты. По каждой содержательной линии в соответствии с обязательным минимумом содержания начального образования составляются тестовые задания, также широко представлены такие тесты в готовых печатных изданиях. Они помогают выявить пробелы в обучении. В своем классе были выявлены следующие проблемы в изучении элементов алгебры:

Часть учащихся испытывают некоторые затруднения при решении буквенных выражений (нахождение числового значения буквенного выражения при заданных значениях входящих в него букв);

При решении уравнений допускаются ошибки на использовании правил нахождения неизвестных компонентов (зависимость между компонентами сложения, вычитания, умножения и деления);

При проверке корней уравнения часть детей не просчитывают левую часть уравнения, а автоматически ставят знак равно;

При более сложной структуре уравнений вида X+10=30-7 или X+(45-17)=40 при преобразовании и упрощении уравнения некоторые дети теряют переменную, увлекаясь арифметическими вычислениями.

Получив данные тестов и проанализировав итоги, делаю для себя план работы для корректировки пробелов и недоработок.

Примерный тест для проверки знаний учащихся.

  1. Дополни до 10 9, 5, 8, 4, 7, 0.
  2. Впиши число в карточку: 8+5 17-9

8+2+ 17-7-

  1. Догадайся, какое число надо записать в карточку:

3, 6, 9, 12, * А(13), В(15), С(18), Г(другое число)

  1. Впиши в карточку такое число, чтобы равенство было верным:

9=17-* А(6), В(15), С(4), Г (другое число)

  1. . 8+7=19-* А(3), В(15), С(4), Г(другое число).

6 Укажи верные равенства:

А) 12+1=11 В)14-5=9 С)17+3=20 Д)20-1=9 Е)18+2=20 Ж)8-5=13 З)6+9=15

7. Расположи выражения в порядке уменьшения их значений: А)7-5 В)7+6 С)3+7

8. Какими цифрами можно заменить *?

1)12 1* А(0, 1, 2) В(3, 4, 5, 6, 7, 8, 9) С(0, 1)

9. Где правильно расставлен порядок выполнения действий? А) 12-3+7 В) 19-9-5+3

10.Запиши числовые выражения и найди значения: из числа 12 вычесть сумму чисел 3 и 5

А) (3+5)-12 В) 12-3+5 С) 12-(3+5) Г) другое ответ:

Данный тест показывает, кто из детей недостаточно чётко усвоил нумерацию чисел второго десятка. Это дети, получившие меньше 18 баллов. С ними нужно проводить коррекционную работу, которая включает в себя все возможные случаи использования полученных знаний, где дети ориентируются в аналогичных упражнениях достаточно хорошо. Намечается план работы с родителями данных детей и оказывается консультация для тех родителей, кому это необходимо. В итоговой диагностике проверяются знания всего курса обучения за 1класс. Я провожу с ними ещё одну работу по проверке усвоения сложения и вычитания чисел в пределах 20, а потом и 100. Дети должны уметь выполнять действия с использованием изученных приёмов: находить неизвестный компонент сложения и вычитания, сравнивать числа и числовые выражения, уметь находить обратное действие. Что касается программ других авторов, то можно наблюдать, что раннее введение алгебраического материала вполне приемлемо для всех детей. Проработав разные программы, изучив методики преподавания разных авторов математики, я использую все нужные мне элементы из любого учебника, чтобы урок был более эффективным и продуктивным. Интересные упражнения, которые развивают мышление, логику, учат думать, изобретать, комбинировать включаю в каждый урок математики. Мои дети любимым предметом выбирают математику. Выявить пробелы в знаниях помогает использование тетрадей на печатной основе, проверочные тесты.

При изучении всех содержательных линий математики проводится постоянное отслеживание результатов обучения и ведется диагностику преподавания. Дети постоянно выполняют промежуточные тесты и проверочные работы, поэтому легко идет контроль за успеваемостью учащихся.

В начальной школе при безотметочном обучении (1-2кл.) использую следующие уровни и критерии сформированности знаний алгебраического материала: высокий уровень(20-25 баллов)- при таком уровне ребенок осознанно владеет изученным материалом, понятия по теме усвоены, умеет самостоятельно работать по теме, задания выполняет без ошибок;

средний уровень (14- 9 баллов)- тема усвоена, умеет ответить на косвенные вопросы, с помощью наводящих вопросов правильно отвечает по теме, допускает 1-2 ошибки, находит их и самостоятельно исправляет;

низкий уровень (менее 14 баллов)- допускает ошибки в большинстве заданий, отвечает на прямой вопрос учителя не всегда правильно, необходимы коррекционные упражнения и дополнительная индивидуальная работа.

Также при обработке диагностических работ провожу поэлементный анализ результатов теста: ошибки и причины их возникновения. При решении уравнений (в процессе поиска числа, при подстановке которого уравнение превращается в верное числовое равенство) возможны и случаются следующие ошибки:

В выборе арифметического действия при нахождении неизвестного компонента (причина такой ошибки- неумение определить зависимость между компонентами или незнание данного материала);

Вычислительные ошибки (причины в использовании алгоритмов сложения, вычитания, умножении и деления, не проведен подробный анализ на каком-то этапе алгоритма).

При решении буквенных выражений при заданных значениях входящих в него букв допускаются следующие ошибки:

При использовании алгоритмов (конкретные вычислительные приёмы);

При конкретном выборе данного значения буквы (невнимательность, не проведен анализ соответствия данной букве определённого числа).

При сравнении чисел и числовых выражений ошибаются:

В постановке знаков больше и меньше (причина в незнании конкретных понятий, не проанализирован поразрядный и поклассовый состав чисел, незнание нумерации натуральных чисел, поместное значение цифр);

В арифметических вычислениях.

При нахождении значения составного числового выражения допускаются ошибки:

В порядке действий,

В неправильной записи компонентов действия (причина ошибок - не сумел определить структуру исходного выражения и соответственно применить необходимое правило, не знал алгоритма выполнения действий). При тщательном анализе результатов контроля знаний, умений, навыков учитель выявляет пробелы, ошибки в выполнениях, правильно можно спланировать дальнейшую работу по ликвидации недостатков в обучении.

Ниже привожу примеры тестов и диагностику проведённых срезов и проверок.

Номер теста

Формируемые умения и навыки

10-11

Счёт в пределах 20, 100.

Таблица сложения и вычитания.

Нахождение значения числового выражения в 2-4действия.

Чтение, запись, сравнение в пределах 100.

Название и обозначение действий сложения и вычитания.

Решение задач в 1-2 действия.

Умение сравнивать, классифицировать.

Пространственные представления.

Знание величин.

Уровень сформированности базовых навыков и математического развития.

Результаты итоговой диагностики за 1 класс

10-11

уровень

Антонов А.

Батраева Д.

Башловкин Д.

Белова В.

Бобылёва Е.

Габриелян Г.

Гасникова М.

Горошко А.

Гузаева Е.

Двугрошева М.

Кондратьев Д.

Константинов И.

Копылов В.

Михайлова В.

Михайлова И.

Морозова А.

Подгорный И.

Разин Н.

Романов Д.

Синицына К.

Сулейманов Р.

Сульёзнов А.

Теплякова Ю.

Фролов Д.

Ширшаева К.

Низкий

Низкий

Средний

Средний

Высокий

Средний

Средний

Высокий

Высокий

Низкий

Высокий

Высокий

Высокий

Высокий

Средний

Высокий

Низкий

Средний

Средний

Высокий

Высокий

Средний

Средний

Средний

средний

Проверка уровня развития памяти

слуховая

зрительная

моторная

Зрительно-слуховая

Антонов А.

Батраева Д.

Башловкин Д.

Белова В.

Бобылёва Е.

Габриелян Г.

Гасникова М.

Горошко А.

Гузаева Е.

Двугрошева М.

Кондратьев Д.

Константинов И.

Копылов В.

Михайлова В.

Михайлова И.

Морозова А.

Подгорный И.

Разин Н.

Романов Д.

Синицына К.

Сулейманов Р.

Сульёзнов А.

Теплякова Ю.

Фролов Д.

Ширшаева К.

0, 4 средний

0,2 низкий

0,6 средний

0,8средний

1 высокий

0,7 средний

0,7 средний

1 высокий

1 высокий

0,5 низкий

1 высокий

1 высокий

1 высокий

1 высокий

0,9 средний

1 высокий

0,4 низкий

0,7 средний

0,7 средний

1 высокий

1 высокий

0,7 средний

1 высокий

0,7 средний

0,6 средний

0,4 низкий

0,3 низкий

0,8 средний

0,9 средний

1 высокий

0,6 средний

1 высокий

1 высокий

1 высокий

0,4низкий

1 высокий

1 высокий

1 высокий

1 высокий

1 высокий

1 высокий

0,4низкий

0,9средний

1 высокий

1 высокий

1 высокий

0,8средний

0,9средний

0,9 средний

0,8средний

0,8 средний

0,4 низкий

1 высокий

1 высокий

1 высокий

0,9средний

1 высокий

1 высокий

1 высокий

0,8средний

1 высокий

1 высокий

1 высокий

1 высокий

1 высокий

1 высокий

0,5низкий

0,8средний

0,7 средний

1 высокий

0,9 средний

0,8средний

1 высокий

0,8средний

0,5низкий

0,7 средний

0,4 низкий

0,9 средний

0,9 средний

  1. высокий

0,8 средний

0,9 средний

  1. высокий
  1. высокий

0,5 низкий

  1. высокий
  1. высокий
  1. высокий
  1. высокий
  1. высокий
  1. высокий

0,4 низкий

0,9 средний

0,9 средний

  1. высокий
  1. высокий

0,8 средний

0,9 средний

0,8 средний

0,5 средний

С=а:N С- коэффициент памяти, при С=1 – оптимальный вариант- высокий уровень

С=0,7 +/-0,2 - средний уровень, С -меньше 0,5 –низкий уровень развития

ЗАКЛЮЧЕНИЕ

В настоящее время возникли достаточно благоприятные условия для коренного улучшения постановки математического образования в начальной школе:

  1. начальная школа из трехлетней преобразована в четырехлетнюю;
  2. на изучение математики в первые четыре года выделяется часов, т.е. 40% всего времени, отводимого этому предмету за всю среднюю школу?
  3. Учителями начальных классов работает с каждым годом все большее число лиц, имеющих высшее образование;
  4. Возросли возможности лучшего обеспечения учителей и школьников учебно-наглядными пособиями, большая часть их выпускается в цветном изображении.

Нет необходимости доказывать решающую роль начального обучения математике для развития интеллекта ученика вообще. Богатство разнообразных ассоциаций, обретаемых школьником за первые четыре года обучения, при правильной постановке дела становится главным условием самонаращивания знаний в последующие годы. Если этот запас исходных представлений и понятий, ходов мыслей, основных логических приёмов будет неполон, негибок, обеднён, то при переходе в старшие классы школьники будут постоянно испытывать трудности, независимо от того, кто их будет учить дальше или по каким учебникам они будут учиться.

Как известно, начальная школа функционирует в нашей и других странах много веков, поэтому теория и практика начального обучения гораздо богаче своими традициями, чем обучение в старших классах.

Драгоценные методические находки и обобщения по начальному обучению математике были сделаны ещё Л.Н.Толстым, К.Д.Ушинским, В.А.Латышевым и другими методистами уже в прошлом веке. Значительные результаты были получены в последние десятилетия по методике начальной математики в лабораториях Л.В.Занкова, А.С.Пчелко, а также в исследованиях по укрупнению дидактических единиц.

При разумном учёте наличных научных результатов, полученных в последние 20 лет по методике начального обучения различными творческими коллективами, сейчас имеется полная возможность добиться в начальной школе «учения с увлечением». В частности, знакомство учащихся с базовым алгебраическими понятиями, несомненно, положительно скажется на освоении учащимися соответствующих знаний в старших классах.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

  1. Актуальные проблемы методики обучения математике в начальных классах./под ред. М.И.Моро, А.М.Пышкало. -М.: Педагогика, 1977.
  2. И.И.Аргинская, Е.А.Ивановская. Математика: Учебник для 1,2,3,4 класса четырехлетней начальной школы.- Самара: Изд. дом «Федоров», 2000.
  3. М.А.Бантова, Г.В.Бельтюкова. Методика преподавания математики в начальных классах.- М.: Педагогика,1984.
  4. П.М.Эрдниев. Укрупненные знания как условие радостного обучения./ Начальная школа.- 1999 №11, с.4-11.
  5. В.В.Давыдов. Психическое развитие в младшем школьном возрасте./ Под ред. А.В.Петровского.- М.: Педагогика, 1973.
  6. А.З.Зак. Развитие умственных способностей младших школьников.
  7. И.М.Доронина. Использование методики УДЕ на уроках математики. //Начальная школа.-2000, №11, с.29-30.
  8. Н.Б.Истомина. Методика обучения математике в начальных классах.- М.: Издательский центр «Академия», 1998.
  9. М.И.Волошкина. Активизация познавательной деятельности младших школьников на уроке математики.//Начальная школа-1992 №10.
  10. В.Ф.Коган. О свойствах математических понятий. -М. : Наука, 1984.
  11. Г.А.Пентегова. Развитие логического мышления на уроках математики. //Начальная школа.-2000.-№11.
  12. А.Н.Колмогоров. О профессии математика. М.-Педагогика. 1962.
  13. М.И.Моро, А.М.Пышкало. Методика обучения математике в начальной школе.- М.Педагогика,1980 .
  14. Л.Г. Петерсон. Математика 1-4классы.-Методические рекомендации для учителя -М.: «Баллас»,2005.
  15. Диагностика результатов образовательного процесса в 4-летней начальной школе: Учебно-методическое пособие /Под ред. Калининой Н.В./ Ульяновск: УИПКПРО, 2002.
  16. Самостоятельные и контрольные работы для начальной школы (-4). М.-«Баллас»,2005.
  17. Ж. Пиаже. Избранные психологические труды. СП-б.: Изд-во «Питер»,1999.
  18. А.В. Сергеенко. Преподавание математики за рубежом.- М.: Академия, 1998.
  19. Стойлова Л.П. Математика. М.- Академия, 2000.
  20. У.У.Сойер Прелюдия к математике, М.-Просвещение.1982.
  21. Тесты: Начальная школа.1,2,3,4кл.: Учебно-методическое пособие/Л.М.Зеленина, Т.Е.Хохлова, М.Н.Быстрова и др.-2-е изд., стереотип.- М.:Дрофа,2004.

В «Обязательном минимуме содержания начального образования» по образовательной области «Математика» изучение алгебраического материала, как это было ранее, не выделено в качестве отдельной дидактической единицы подлежащей обязательному изучению. В данной части документа кратко отмечено, что необходимо «дать знания о числовых и буквенных выражениях, их значениях и различиях между этими выражениями». В «Требованиях к качеству подготовки выпускников» можно лишь найти короткую фразу неопределенного смысла «научить вычислять неизвестный компонент арифметического действия». Вопрос о том, как научить «вычислять неизвестный компонент» должен решать автор программы или технологии обучения.

Рассмотрим, как характеризуются понятия «выражение», «равенство», «неравенство», «уравнение» и какова методика их изучения в различных методическихсистемах обучения

7.1. Выражения и их виды …
в курсе математики

начальной школы

Выражением называют математическую запись, состоящую из чисел, обозначенных буквами или цифрами, соединенных знаками арифметических действий. Отдельно взятое число есть также выражение. Выражение, в котором все числа обозначены цифрами, называют числовым выражением .

Если в числовом выражении выполнить указанные действия, то получим число, которое называют значением выражения.

Выражения можно классифицировать по числу арифметических действий, которые используются при записи выражений, и по способу обозначения чисел. По первому основанию выражения разбиваются на группы: элементарных (не содержащих знака арифметического действия), простых (один знак арифметического действия) и составных (более одного знака арифметических действий) выражений. По второму основанию различают числовые (числа записаны цифрами) и буквенные (хотя бы одно число или все числа обозначены буквами) выражения.

Математическую запись, которую в математике принято называть выражением, необходимо отличать от других видов записей.

Примером или вычислительным упражнением называют запись выражения вместе с требованием к его вычислению.

5+3 выражение, 8- его значение

5+3= вычислительное упражнение (пример),

8- результат вычислительного упражнения (примера)

В зависимости от знака арифметического действия, который используется в записи простого выражения, простые выражения разбивают на группы выражений со знаком «+,», «-», « », «:». Эти выражения имеют особые названия (2 + 3 — сумма; 7 — 4 – разность; 7 × 2 – произведение; 6: 3 — частное) и общепринятые способы чтения, с которыми знакомятся учащиеся начальной школы.

Способы чтения выражений со знаком «+»:

25+17 – 25 плюс 17

25+17 – к 25-ти прибавить 17

25+17 – 25 да 17

25+17 – 25 и еще 17.

25+17 – сумма чисел двадцать пять и семнадцать (сумма 25-ти и 17-ти)

25+17 – 25 увеличить на 17

25+17 – 1-ое слагаемое 25, 2-ое слагаемое 17

С записью простых выражений дети знакомятся по мере того, как вводится соответствующее математическое действие. Например, знакомство с действием сложения сопровождается записью выражения на сложение 2 + 1, здесь же даются образцы первых форм чтения этих выражений: «к двум прибавить один», «два и один», «два да один», «два плюс один». Другие формулировки вводятся по мере знакомства детей с соответствующими понятиями. Изучая название компонентов действий и их результатов, дети учатся читать выражение, используя эти названия (первое слагаемое 25, второе 17 или сумма 25-ти и 17-ти). Знакомство с понятиями «увеличить на…», «уменьшить на…» позволяет ввести новую формулировку для чтения выражений на сложение и вычитание с этими терминами «двадцать пять увеличить на семнадцать», «двадцать пять уменьшить на семнадцать». Так же поступают с остальными видами простых выражений.

С понятиями «выражение», «значение выражения» в ряде образовательных систем («Школа России» и «Гармония») дети знакомятся несколько позже, чем научатся их записывать, вычислять и читать не всеми, но многими формулировками. В других программах и системах обучения (система Л.В. Занкова, «Школа 2000…», «Школа 2100») эти математические записи сразу называют выражениями и используют это слово в вычислительных заданиях.

Обучая детей читать выражения различными формулировками, мы вводим их в мир математических терминов, даем возможность познать математический язык, отрабатываем смысл математических отношений, что, несомненно, повышает математическую культуру ученика, способствует осознанному усвоению многих математических понятий.

Ø Прием «делай как я». Правильная речь учителя, за которым дети повторяют формулировки, — основа грамотной математической речи школьников. Значительный эффект дает использование приема сравнения формулировок, которые произносят дети, с заданным образцом. Полезно использовать прием, когда учитель специально допускает речевые ошибки, а дети его исправляют.

Ø Дать несколько выражений и предложить прочитать эти выражения разными способами. Один ученик читает выражение, а другие проверяют. Полезно давать столько выражений, сколько формулировок знают дети к этому времени.

Ø Учитель диктует выражения разными способами, а дети записывают сами выражения, не вычисляя их значения. Такие задания направлены на то, чтобы проверить знание детьми математической терминологии, а именно: умение записывать выражения или вычислительные упражнения, прочтенные разными математическими формулировками.

Если ставится задача, предусматривающая проверку сформированности вычислительного навыка полезно читать выражения или вычислительные упражнения только теми формулировками, которые хорошо усвоены, не заботясь об их разнообразии, а детям предложить записывать только результаты вычислений, сами выражения можно не записывать.

Выражение, состоящее из нескольких простых, называют составным.

Следовательно, существенным признаком составного выражения является его составленность из простых выражений. Знакомство с составным выражением можно осуществить по следующему плану:

1. Дать простое выражение и вычислить его значение

(7 + 2 = 9), назвать его первым или данным.

2. Составить второе выражение так, чтобы значение первого стало компонентом второго (9 — 3), назвать это выражение продолжением для первого. Вычислить значение второго выражения(9 – 3 = 6).

3. Проиллюстрировать процесс слияния первого и второго выражений, опираясь на пособие.

Пособие представляет собой прямоугольный лист бумаги, который разделен на 5 частей и сложен в виде гармошки. На каждой части пособия имеются определенные записи:

7 + 2 = — 3 = 6

Скрывая вторую и третью части данного пособия (из первого выражения скрываем требование к его вычислению и его значение, а во втором скрываем ответ на вопрос первого), получаем составное выражение и его значение (7 + 2 -3 = 6). Даем ему название – составное (составлено из других).

Иллюстрируем процесс слияния других пар выражений или вычислительных упражнений, подчеркивая:

ü объединить в составное можно лишь такую пару выражений, когда значение одного из них является компонентом другого;

ü значение выражения продолжения совпадает со значением составного выражения.

Закрепляя понятие составного выражения полезно выполнять задания двух видов.

1 вид. Дана совокупность простых выражений, необходимо выделить из них пары, для которых верно отношение «значение одного из них является компонентом другого». Составить из каждой пары простых выражений одно составное выражение.

2 вид. Дано составное выражение. Необходимо записать простые выражения, из которых оно составлено.

Описанный прием полезно использовать по нескольким причинам:

§ по аналогии можно ввести понятие составной задачи;

§ ярче выделяется существенный признак составного выражения;

§ предупреждаются ошибки при вычислении значений составных выражений;

§ данный прием позволяет проиллюстрировать роль скобок в составных выражениях.

Составные выражения, содержащие знаки «+», «-» и скобки, изучаются с первого класса. В некоторых системах обучения («Школа России», «Гармония», «Школа 2000») не предусматривается изучение скобок в первом классе. Их вводят во втором классе при изучении свойств арифметических действий (сочетательное свойство суммы). Скобки вводятся как знаки, с помощью которых в математике можно показать порядок выполнения действий в выражениях содержащих более одного действия. В дальнейшем дети знакомятся с составными выражениями, содержащими действия первой и второй ступеней со скобками и без них. Изучение составных выражений сопровождается изучением правил порядка действий в этих выражениях и способов чтения составных выражений.

Значительное внимание во всех программах уделяется преобразованию выражений, которые осуществляются на основании сочетательного свойства суммы и произведения, правил вычитания числа из суммы и суммы из числа, умножения суммы на число и деления суммы на число. На наш взгляд, в отдельных программах, недостаточно упражнений направленных на формирование умения читать составные выражения, что, естественно, позже сказывается на умении решать уравнения вторым способом (см. ниже). В последних изданиях учебно-методических комплексов по математике для начальных классов по всем программам большое внимание уделяется заданиям на составление программ и алгоритмов вычислений для составных выражений в три — девять действий.

Выражения , в которых одно число или все числа обозначены буквами, называютбуквенными (а + 6; (а +в с – буквенные выражения). Пропедевтикой к введению буквенных выражений являются выражения, где одно из чисел заменяется точками или пустым квадратом. Называют эту запись выражением «с окошком» (+4 – выражение с окошком).

Типичными заданиями, содержащими буквенные выражения, являются задания на нахождение значений выражений при условии, что буква принимает различные значения из заданного перечня значений. (Вычисли значения выражений а + в и а в , если а = 42, в = 90 или а = 100, в = 230). Для вычисления значений буквенных выражений заданные значения переменных поочередно подставляют в выражения и далее работают как с числовыми выражениями.

Буквенные выражения могут использоваться для введения обобщенных записей свойств арифметических действий, формируют представления о возможности переменных значений компонентов действий и позволяют подвести детей к центральному математическому понятию «переменная величина». Кроме того, с помощью буквенных выражений дети осознают свойства существования значений суммы, разности, произведения, частного на множестве целых неотрицательных чисел. Так, в выражении а + в при любых значениях переменных а и в можно вычислить значение суммы, а значение выражения а в , на указанном множестве можно вычислить только в том случае, если в меньше или равно а . Анализируя задания, направленные на установление возможных ограничений для значений а и в в выражениях а в и а : в , дети устанавливают свойства существования значения произведения и значения частного в адаптированном к возрасту виде.

Буквенная символика используется в качестве средства обобщения знаний и представлений детей о количественных характеристиках объектов окружающего мира и о свойствах арифметических действий. Обобщающая роль буквенной символики делает ее очень сильным аппаратом для формирования обобщенных представлений и способов действий с математическим содержанием, что, несомненно, повышает возможности математики в развитии и формировании абстрактных форм мышления.

7.2. Изучение равенств и неравенств в курсе

математики начальных классов

Сравнение чисел и/или выражений приводит к появлению новых математических понятий «равенство» и «неравенство».

Равенством называют запись, содержащую два выражения соединенные знаком «=» — равно (3 = 1 + 2; 8 + 2 =7 + 3 — равенства).

Неравенством называют запись, содержащую два выражения и знак сравнения, указывающий на отношения «больше» или «меньше» между данными выражениями

(3 < 5; 2+4 > 2+3 — неравенства).

Равенства и неравенства бывают верными и неверными . Если значения выражений, стоящих в левой и правой части равенства, совпадают, то равенство считается верным, если нет, то равенство будет неверным. Соответственно: если в записи неравенства знак сравнения правильно указывает на отношения между числами (элементарными выражениями) или значениями выражений, то неравенство верно, в противном случае, неравенство неверно.

Большинство заданий в математике связано с вычислением значений выражений. Если значение выражения найдено, то выражение и его значение можно соединить знаком «равно», что принято записывать в виде равенства: 3+1=4. Если значение выражения вычислили верно, то равенство называют верным, если неверно, то записанное равенство считают неверным.

С равенствами дети знакомятся в первом классе одновременно с понятием «выражение» в теме «Числа первого десятка». Осваивая символическую модель образования последующего и предыдущего числа, дети записывают равенства 2 + 1 = 3 и 4 – 1 = 3. В дальнейшем равенства активно используются при изучении состава однозначных чисел и далее с этим понятием связано изучение практически каждой темы в курсе математики начальной школы.

Вопрос о введении понятий «верное» и «неверное» равенства в различных программах решается неоднозначно. В системе «Школа 2000…» это понятие вводят одновременно с записью равенства, в системе «Школа России» — при изучении темы «Состав однозначных чисел» в записях равенств «с окошком» (+3 = 5; 3 + = 5). Подбирая число, которое можно вставить в окошко, дети убеждаются в том, что в одних случаях получаются верные, а в других неверные равенства. Следует заметить, что данные математические записи с одной стороны позволяют закрепить состав чисел или другой вычислительный материал по теме урока, с другой, формируют представление о переменной величине и являются подготовкой к усвоению понятия «уравнение».

Во всех программах наиболее часто используются два вида заданий, связанных с понятиями равенства и неравенства, верные и неверные равенства и неравенства:

· Даны числа или выражения, нужно между ними поставить знак так, чтобы запись была верной. Например, «Поставь знаки: «<», «>», «=» 7-5 … 7-3; 6+4 … 6+3».

· Даны записи со знаком сравнения, надо подставить вместо окошка такие числа, чтобы получилось верное равенство или неравенство. Например, «Подбери числа так, чтобы записи были верными: > ; или +2 < +3».

Если сравниваются два числа, то выбор знака дети обосновывают, опираясь на принцип построения ряда натуральных чисел, значность числа или его состав. Сравнивая два числовых выражения или выражение с числом, дети вычисляют значения выражений, а затем сравнивают их значения, т. е. сводят сравнение выражений к сравнению чисел. В образовательной системе «Школа России» этот способ дается в виде правила: «Сравнить два выражения – значит, сравнить их значения». Этот же набор действий дети выполняют для проверки правильности выполненного сравнения. «Проверь, верны ли неравенства:

42 + 6 > 47; 47 — 5 > 47 — 4».

Наибольший развивающий эффект имеют задания, требующие поставить знак сравнения (или проверить верно ли поставлен знак сравнения) не вычисляя значений выражений данных в левой и правой частях неравенства (равенства). В этом случае дети должны поставить знак сравнения, опираясь на выявленные математические закономерности.

Форма предъявления задания и способы оформления его выполнения варьируется как в рамках одной программы, так и в различных программах.

Традиционно при решении неравенств с переменной использовалось два способа: способ подбора и способ сведения к равенству.

Первый способ называют способом подбора, что вполне отражает действия производимые ребенком при его использовании. При этом способе значение неизвестного числа подбирается либо из произвольного множества чисел, либо из заданной их совокупности. После каждого выбора значения переменной (неизвестного числа) осуществляется проверка правильности выбора. Для этого в заданное неравенство вместо неизвестного числа подставляется найденное значение. Вычисляется значение левой и правой части неравенства (значение одной из частей может быть элементарным выражением, т.е. числом), а затем, сравнивается значение левой и правой части полученного неравенства. Все эти действия могут выполняться устно или с записью промежуточных вычислений.

Второй способ заключается в том, что в записи неравенства вместо знака «<» или «>» ставят знак равенства и решают равенство известным детям способом. Затем, проводятся рассуждения, при которых используются знания детей об изменении результата действия в зависимости от изменения одного из его компонентов и определяются допустимые значения переменной.

Например, «Определи, какие значения может принимать а в неравенстве 12 — а < 7». Решение и образец рассуждений:

· Найдем значение а , если 12 – а = 7

· Вычисляю, применяя правило нахождения неизвестного вычитаемого: а = 12 — 7, а = 5.

· Уточняю ответ: при а равном 5-ти («корень уравнения равен 5-ти» в системе Занкова и «Школа 2000…») значение выражения 12 — 5 равно 7, а нам нужно найти такие значения этого выражения, которые бы были меньше 7-ми, значит надо из 12 вычитать числа большие пяти. Это могут быть числа 6, 7, 8, 9, 10, 11, 12.(чем большее число мы вычитаем из одного и того же числа, тем меньше значение разности). Значит, а = 6, 7, 8, 9, 10, 11, 12. Значения большие 12-ти переменная а принимать не может, так как большее число из меньшего вычитать нельзя (мы не умеем, если не вводятся отрицательные числа).

Пример подобного задания из учебника 3 класса (1-4), авторы: И.И. Аргинская, Е.И. Ивановская :

№ 224. «Реши неравенства, используя решение соответствующих уравнений:

к — 37 < 29, 75 — с > 48, а + 44 < 91.

Проверь свои решения: подставь в каждое неравенство несколько чисел, больших и меньших корня соответствующего уравнения.

Составь свои неравенства с неизвестными числами, реши их и проверь найденные решения.

Предложи свое продолжение задания».

Надо отметить, что ряд технологий и программ обучения, усиливая логическую составляющую и значительно превышая стандартные требования к содержанию математического образования в начальных классах, вводят понятия:

Ø переменная величина, значение переменной;

Ø понятие «высказывание» (верные и неверные утверждения называют высказыванием (М3П) ), «истинные и ложные высказывания»;

Ø рассматривают системы уравнений (И.И. Аргинская, Е.И. Ивановская).

7.3. Изучение уравнений в курсе математики

начальных классов

Равенство, содержащее переменную величину, называют уравнением. Решить уравнение — значит, найти такое значение переменной величины (неизвестного числа), при котором уравнение преобразуется в верное числовое равенство. Значение переменной, при котором уравнение преобразуется в верное равенство, называют корнем уравнения.

В некоторых образовательных системах («Школа России» и «Гармония») введение понятия «переменной» не предусматривается. В них уравнение трактуется как равенство, содержащее неизвестное число. И далее, решить уравнение, значит, найти такое число, при подстановке которого вместо неизвестного получается верное равенство. Это число называют значением неизвестного или решением уравнения. Таким образом, термин «решение уравнения» используется в двух смыслах: как число (корень), при подстановке которого вместо неизвестного числа уравнение обращается в верное равенство, и как сам процесс решения уравнения.

В большинстве программ и систем обучения в начальной школе рассматривают два способа решения уравнений.

Первый способ называют способом подбора, что вполне отражает действия производимые ребенком при его использовании. При этом способе значение неизвестного числа подбирается либо из произвольного множества чисел, либо из заданной их совокупности. После каждого выбора значения осуществляется проверка правильности решения. Сущность проверки вытекает из определения уравнения и сводится к выполнению четырех взаимосвязанных действий:

1. В заданное уравнение вместо неизвестного числа подставляется найденное значение.

2. Вычисляется значение левой и правой части уравнения (значение одной из частей может быть элементарным выражением, т.е. числом).

3. Сравнивается значение левой и правой части полученного равенства.

4. Делается вывод о верности или неверности полученного равенства и далее, является ли найденное число решением (корнем) уравнения.

На первых порах выполняется только первое действие, а остальные проговариваются. Этот алгоритм проверки сохраняется для каждого способа решения уравнения.

Ряд систем обучения («Школа 2000», система обучения Д.Б. Эльконина – В.В. Давыдова) для решения простых уравнений используют зависимость между частью и целым.

8 + х =10; 8 и х — части; 10 – целое. Чтобы найти часть можно из целого вычесть известную часть: х = 10 — 8; х = 2.

В этих системах обучения, еще на этапе решения уравнений способом подбора в речевую практику вводится понятие «корень уравнения» и сам способ решения называют решением уравнения с помощью «подбора корней».

Второй способ решения уравнения опирается на зависимость между результатом и компонентами действия. Из этой зависимости вытекает правило нахождения одного из компонентов. Например, зависимость между значением суммы и одним из слагаемых звучит так: «если из значения суммы двух слагаемых вычесть одно из них, то получится другое слагаемое». Из этой зависимости вытекает правило нахождения одного из слагаемых: «чтобы найти неизвестное слагаемое, надо из значения суммы вычесть известное слагаемое». Решая уравнение, дети рассуждают так:

Задание: Реши уравнение 8 + х = 11.

В данном уравнении неизвестно второе слагаемое. Мы знаем, чтобы найти второе слагаемое нужно из значения суммы вычесть первое слагаемое. Значит, надо из 11 вычесть 8. Записываю: х = 11 – 8. Вычисляю, 11 минус 8 равно 3, пишу х = 3.

Полная запись решения с проверкой будет иметь следующий вид:

8 + х = 11

х = 11 — 8

х = 3

Названным выше способом решаются уравнения с двумя и более действиями со скобками и без них. В этом случае нужно определить порядок действий в составном выражении и, называя компоненты в составном выражении по последнему действию, следует выделить неизвестное, которое в свою очередь может быть выражением на сложение, вычитание, умножение или деление (выражено суммой, разностью, произведением или частным). Затем применяют правило для нахождения неизвестного компонента, выраженного суммой, разностью, произведением или частным, учитывая названия компонентов по последнему действию в составном выражении. Выполнив вычисления в соответствии с этим правилом, получают простое уравнение (или снова составное, если первоначально в выражении было три или более знаков действий). Его решение проводится по уже описанному выше алгоритму. Рассмотрим следующее задание.

Реши уравнение (х + 2) : 3 = 8.

В данном уравнении неизвестно делимое, выраженное суммой чисел х и 2. (В соответствии с правилами порядка действий в выражении, действие деления выполняют последним).

Чтобы найти неизвестное делимое, можно значение частного умножить на делитель: х + 2 = 8 × 3

Вычисляем значение выражения справа от знака равенства, получаем: х + 2 = 24.

Полная запись имеет вид: (х + 2) : 3 = 8

х + 2 = 8 × 3

х + 2 = 24

х = 24 — 2

Проверка: (22 + 2) : 3 = 8

В образовательной системе «Школа 2000…» в связи с широким использованием алгоритмов и их видов дается алгоритм (блок – схема) решения таких уравнений (см. схему 3).

Второй способ решения уравнений достаточно громоздкий, особенно для составных уравнений, где правило взаимосвязи между компонентами и результатом действия применяется многократно. В связи с этим, многие авторы программ (системы «Школа России», «Гармония») совсем не включают в программу начальных классов знакомство с уравнениями сложной структуры либо вводят их в конце четвертого класса.

В данных системах в основном ограничиваются изучением уравнений следующих видов:

х + 2 = 6; 5 + х = 8 — уравнения на нахождение неизвестного слагаемого;

х – 2 = 6; 5 – х = 3 — уравнения на нахождение неизвестного уменьшаемого и вычитаемого соответственно;

х × 5 = 20, 5 × х = 35 — уравнения на нахождение неизвестного множителя;

х : 3 = 8, 6: х = 2 — уравнения на нахождение неизвестного делимого и делителя соответственно.

х × 3 = 45 — 21; х × (63 — 58) = 20; (58 — 40) : х = (2 × 3) — уравнения, где одно или два числа, входящих в уравнение, представлено числовым выражением. Способ решения этих уравнений сводится к вычислению значений этих выражений, после чего уравнение принимает вид одного из простых уравнений выше указанных видов.

Ряд программ обучения математике в начальных классах (образовательная система Л.В. Занкова и «Школа 2000…») практикуют знакомство детей с более сложными уравнениями, где правило взаимосвязи между компонентами и результатом действия приходится применять многократно и, нередко, требуют выполнения действий по преобразованию одной из частей уравнения на основе свойств математических действий. Например, в этих программах учащимся в третьем классе для решения предлагаются такие уравнения:

х — (20 + х ) = 70 или 2 × х – 8 + 5 × х = 97.

В математике существует и третий способ решения уравнений, который опирается на теоремы о равносильности уравнений и следствия из них. Например, одна из теорем о равносильности уравнений в упрощенной формулировке читается так: «Если к обеим частям уравнения с областью определения х прибавить одно и то же выражение с переменной, определенное на том же множестве, то получим новое уравнение, равносильное данному».

Из данной теоремы вытекают следствия, которые и используются при решении уравнений.

Следствие 1. Если к обеим частям уравнения прибавить одно и то же число, то получим новое уравнение равносильное данному.

Следствие 2. Если в уравнении одно из слагаемых (числовое выражение или выражение с переменной) перенести из одной части в другую, поменяв знак слагаемого на противоположный, то получим уравнение равносильное данному.

Таким образом, процесс решения уравнения сводится к замене данного уравнения, равносильным, причем эта замена (преобразование) может осуществляться только с учетом теорем о равносильности уравнений или следствий из них.

Этот способ решения уравнений является универсальным, с ним детей знакомят в системе обучения Л.В. Занкова и в старших классах.

В методике работы над уравнениями накоплено большое число творческих заданий :

· на выбор уравнений по заданному признаку из ряда предложенных;

· на сравнение уравнений и способов их решений;

· на составление уравнений по заданным числам;

· на изменение в уравнении одного из известных чисел так, чтобы значение переменной стало больше (меньше), чем первоначально найденное значение;

· на подбор известного числа в уравнении;

· на составление алгоритмов решения с опорой на блок-схемы решения уравнений или без них;

· составление уравнений по текстам задач.

Следует заметить, что в современных учебниках наблюдается тенденция к введению материала на понятийном уровне. Например, каждому из выше названных понятий дается развернутое определение, отражающее его существенные признаки. Однако не все встречающиеся определения отвечают требованиям принципа научности. Например, понятие «выражение» в одном из учебников математики для начальных классов трактуется так: «Математическая запись из арифметических действий, не содержащая знаков больше, меньше или равно называется выражением» (образовательная система «Школа 2000»). Заметим, что в данном случае определение составлено неверно, так как в нем описано то, чего в записи нет, но неизвестно, что там есть. Это довольно типичная неточность, которую допускают в определении.

Заметим, что определения понятиям даются не сразу, т.е. не при первичном знакомстве, а в отсроченном времени, после того как дети познакомились с соответствующей математической записью и научились ею оперировать. Определения даются чаще всего в неявном виде, описательно.

Для справки : В математике встречаются как явные, так и неявные определения понятий. Среди явных определений наиболее распространены определения через ближайший род и видовое отличие . (Уравнение – это равенство, содержащее переменную величину.). Неявные определения можно разделить на два вида: контекстуальные и остенсивные . В контекстуальных определениях содержание нового понятия раскрывается через отрывок текста, через анализ конкретной ситуации.

Например: 3 + х = 9. х — неизвестное число, которое надо найти.

Остенсивные определения используются для введения терминов путем демонстрации объектов, которые этими терминами обозначаются. Поэтому эти определения еще называют определениями путем показа. Например, таким способом определяются в начальных классах понятия равенства и неравенства.

2 + 7 > 2 + 6 9 + 3 = 12

78 — 9 < 78 6 × 4 = 4 × 6

неравенства равенства

7.4. Порядок выполнения действий в выражениях

Наши наблюдения и анализ ученических работ показывает, что изучение данной содержательной линии сопровождается следующими видами ошибок школьников:

· Не могут правильно применить правило порядка действий;

· Неверно отбирают числа для выполнения действия.

Например, в выражении 62 + 30: (18 — 3) выполняют действия в следующем порядке:

62 + 30 = 92 или так: 18 – 3 = 15

18 — 3 = 15 30: 15 = 2

30: 15 = 2 62 + 30 = 92

Опираясь на данные о типичных ошибках, возникающих у школьников можно выделить два основных действия, которые следует формировать в процессе изучения данной содержательной линии:

1) действие по определению порядка выполнения арифметических действий в числовом выражении;

2) действие по отбору чисел для вычисления значений промежуточных математических действий.

В курсе математики начальных классов традиционно правила порядка действий формулируются в следующем виде.

Правило 1 . В выражениях без скобок, содержащих только сложение и вычитание или умножение и деление, действия выполняются в том порядке, как они записаны: слева направо.

Правило 2. В выражениях без скобок сначала выполняются по порядку слева направо умножение или деление, а потом сложение или вычитание.

Правило 3 . В выражениях со скобками сначала вычисляют значение выражений в скобках. Затем по порядку слева направо выполняются умножение или деление, а потом сложение или вычитание.

Каждое из данных правил ориентировано на определенный вид выражений:

1) выражения без скобок, содержащие только действия одной ступени;

2) выражения без скобок, содержащие действия первой и второй ступени;

3) выражения со скобками, содержащие действия, как первой, так и второй ступени.

При такой логике введения правил и последовательности их изучения выше названные действия будут состоять из ниже перечисленных операций, овладение которыми и обеспечивает усвоение данного материала:

§ распознать структуру выражения и назвать, к какому типу оно относится;

§ соотнести данное выражение с правилом, которым надо руководствоваться при вычислении его значения;

§ установить порядок действий в соответствии с правилом;

§ правильно отобрать числа для выполнения очередного действия;

§ выполнить вычисления.

Данные правила вводятся в третьем классе как обобщение для определения порядка действий в выражениях различной структуры. Нужно заметить, что до знакомства с этими правилами дети уже встречались с выражениями со скобками. В первом и втором классах при изучении свойств арифметических действий (сочетательное свойство сложения, распределительное свойство умножения и деления), умеют вычислять значения выражений, содержащих действия одной ступени, т.е. им знакомо правило № 1. Поскольку вводится три правила, отражающие порядок действий в выражениях трех видов, то необходимо, прежде всего, научить детей выделять различные выражения с точки зрения тех признаков, на которые ориентировано каждое правило.

В образовательной системе «Гармония » основную роль в изучении этой темы играет система целесообразно подобранных упражнений, через выполнение которых дети усваивают общий способ определения порядка действий в выражениях разной структуры. Нужно заметить, что автор программы по математике в данной системе очень логично выстраивает методику введения правил порядка действий, последовательно предлагает детям упражнения для отработки операций, входящих в состав выше названных действий. Чаще всего встречаются задания:

ü на сравнение выражений и последующее выявление в них признаков сходства и различия (признак сходства отражает тип выражения, с точки зрения его ориентации на правило);

ü на классификацию выражений по заданному признаку;

ü на выбор выражений с заданными характеристиками;

ü на конструирование выражений по заданному правилу (условию);

ü на применение правила в различных моделях выражений (символической, схематической, графической);

ü на составление плана или блок-схемы порядка выполнения действий;

ü на постановку скобок в выражении при заданном его значении;

ü на определение порядка действий в выражении при вычисленном его значении.

В системах «Школа 2000…» и «Начальная школа ХХI века» предлагается несколько другой подход к изучению порядка действий в составных выражениях. При этом подходе основное внимание уделяется пониманию учащимися структуры выражения. Важнейшим учебным действием при этом является выделение в составном выражении нескольких частей (разбиение выражения на части). В процессе вычисления значений составных выражений учащиеся пользуются рабочими правилами :

1. Если выражение содержит скобки, то его разбивают на части так, чтобы одна часть с другой были соединены действиями первой ступени (знаками «плюс» и «минус»), не заключенными в скобки, находят значение каждой части, а затем действия первой ступени выполняют по порядку – слева направо.

2. Если в выражении нет действий первой ступени, не заключенных в скобки, но есть действия умножения и деления, не заключенные в скобки, то выражение разбивают на части, ориентируясь на эти знаки.

Эти правила позволяют производить вычисление значений выражений, содержащих большое число арифметических действий.

Рассмотрим пример.

Знаками плюс и минус, не заключенными в скобки, разобьем выражение на части: от начала до первого знака (минус), не заключенного в скобки, затем от этого знака до следующего (плюс) и от знака плюс до конца.

3 · 40 — 20 · (60 — 55) + 81: (36: 4)

Получилось три части:

1 часть — 3 40

2 часть — 20 · (60 — 55)

и 3 часть 81: (36: 4).

Находим значение каждой части:

1) 3 · 40 = 120 2) 60 — 55 = 5 3) 36: 4 = 9 4) 120 -100 = 20

20 · 5 = 100 81: 9 = 9 20 + 9 = 29

Ответ: значение выражения 29.

Цель семинаров по данной содержательной линии

· реферировать и рецензировать статьи (пособия) дидактического, педагогического и психологического содержания;

· составлять картотеку к докладу, для изучения конкретной темы;

· выполнять логико-дидактический анализ школьных учебников, учебных комплектов, а также анализ реализации в учебниках определенной математической идеи, линии;

· подбирать задания для обучения понятиям, обоснованию математических утверждений, формированию правила или построению алгоритма.

Задания для самоподготовки

Тема занятия . Характеристика понятий «выражение», «равенство», «неравенство», «уравнение» и методика их изучения в различных методических

Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Министерство образования и науки РФ Государственное образовательное учреждение высшего профессионального образования «Соликамский государственный педагогический институт» Кафедра математики и физики В. И. Кузьминова ЭЛЕМЕНТЫ АЛГЕБРЫ В КУРСЕ МАТЕМАТИКИ ДЛЯ УЧАЩИХСЯ НАЧАЛЬНЫХ КЛАССОВ Учебно-методическое пособие Соликамск СГПИ 2011 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Содержание УДК 37 ББК 74.202.42 К 89 Рецензенты: старший преподаватель ПНО и ВПГПУ Ю. Ю. Скрипова, зав. кафедрой математики и физики, кандидат педагогических наук, доцент СГПИ Л. Г. Шестакова. Введение............................................................................................4 Из истории алгебры.......................................................................5 Общая характеристика методики изучения алгебраического материала.........................................................8 Числовые выражения....................................................................9 К 89 Кузьминова, В. И. Элементы алгебры в курсе математики начальных классов [Текст] : учебнометодическое пособие / В. И. Кузьминова; ГОУ ВПО «Соликамский государственный педагогический институт». – Соликамск: СГПИ, 2011. – 48 с. – 100 экз. Числовые равенства и неравенства..........................................22 Тождественные преобразования числовых выражений....28 Буквенные выражения..................................................................30 Уравнения в начальном курсе математики............................35 Пособие предназначено для студентов-бакалавров, обучающихся по направлению 050700 – «Педагогика», профиль 050707 – «Начальное образование». Пособие нацелено на углубление и обобщение методических знаний студентов по одному из вопросов частной методики – изучения алгебраического материала в курсе математики, а также на систематизацию типов заданий, которые необходимо использовать в процессе усвоения детьми элементов алгебры. Обучение младших школьников решению задач алгебраическим методом.............................................................42 Неравенства с переменной..........................................................44 Обучение младших школьников элементам алгебры........45 Список литературы........................................................................47 УДК 37 ББК 74.202.42 Рекомендовано к изданию РИСо СГПИ. Протокол № 17 от 10.12.2010 г. Кузьминова В. И., 2011 ГОУ ВПО «Соликамский государственный педагогический институт, 2011 3 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Введение Данное учебно-методическое пособие предназначено для студентов-бакалавров, обучающихся по направлению 050700 – «Педагогика», профиль 050707 – «Начальное образование». Рекомендуется как для очного, так и для заочного отделения. Пособие посвящено изучению одного из вопросов дисциплины «Теоретические основы и технологии начального математического образования» – методике изучения элементов алгебры в начальном курсе математики. В пособии даны краткие исторические сведения о зарождении алгебры как науки, раскрыты общие положения, связанные с изучением алгебраического материала в начальной школе. В пособии описана методика обучения младших школьников отдельным вопросам (числовые выражения, числовые равенства и неравенства, буквенные выражения, уравнения и неравенства с одной переменной), выделены типы заданий, которые необходимо использовать при уточнении представлений об основных понятиях алгебры. Восполняя недостаток в учебно-методической литературе по дисциплине «Теоретические основы и технологии начального математического образования», учебное пособие углубляет и обобщает знания студентов, позволяя сформировать правильный подход к изучению элементов алгебры и умение самостоятельно работать с учебно-методической литературой. Из истории алгебры Любой выпускник средней школы на вопрос, чему его научили на уроках алгебры, наверняка скажет: «Решать уравнения и задачи с помощью уравнений». Современные ученые придерживаются той же точки зрения на содержание алгебры. Французские математики Александр Гротендик (родился в 1928 г.) и Жан Дьедоне (родился в 1906 г.) в статье «Элементы алгебраической топологии» пишут: «Можно утверждать, что решение полиноминальных уравнений послужило исторически источником алгебры и что со времени вавилонян, индусов и Диофанта и до наших дней оно остается одной из её основных целей». Цели алгебры оставались неизменными на протяжении тысячелетий – решались уравнения: сначала линейные, потом квадратные, затем кубические, а позже уравнения еще больших степеней. Но форма, в которой описывались алгебраические результаты, менялась до неузнаваемости. Древние египтяне излагали свои алгебраические познания в числовой форме. В папирусах, которые дошли до нас, решаются задачи практического содержания: вычисляются площади земельных участков, объёмы сосудов, количества зерна и т.д. Все задачи с конкретными числовыми данными, но в некоторых из них уже проскальзывает теоретический интерес. Например, задача из папируса Кахуна (около XVIII – XVI до н.э.): «Найти два числа х и у, для 3 которых x2 + y2 = 100 и x ÷ y = 1 ÷ » (в современных обозначения). 4 В папирусах она решена методом «Ложного положения». Именно, 3 если положить x=1, то y = и x 2 + y 2 =(5)2. Но по условию 4 4 5 x2 + y2 = 102, следовательно, в качестве x надо брать не 1, а 10: = 8, 4 тогда y = 6. Значительные успехи в развитии алгебры были достигнуты в Древнем Вавилоне. Там решались уравнения первой, второй и даже отдельные уравнения третьей степени. Способы решения конкретных уравнений дают основания считать, что вавилоняне владели и общими правилами нахождения уравнений первой и второй степени. 4 5 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Все задачи и их решения излагались в словесной форме. В одной из клинописных табличек встречается такая задача: «Я вычел из площади сторону моего квадрата, это 870». Нетрудно догадаться, что речь идёт о квадратном уравнении x2 - x = 870. Но эти достижения ещё нельзя назвать наукой, поскольку общей теории не было. Совсем другой вид приняла алгебра в Древней Греции. Со времени кризиса, вызванного открытием несоизмеримых отрезков, у древних греков вся математика приобрела геометрическую форму. Древнегреческие математики работали не с числами, а с отрезками. Любые утверждения и доказательства имели право на существование только в том случае, если они давались на геометрическом языке. Например, соотношение, которое мы записываем в виде формулы (a + b)2 = a2 + 2ab + b2, в «Началах» Евклида формируется так: «Если отрезок AB разделен точкой С на два отрезка, то квадрат, построенный на AB, равен двум квадратам на отрезках АС и СВ вместе с удвоенным прямоугольником на АС и СВ». После этого дается длинное доказательство этого факта на геометрическом языке. Геометрический подход к математике отражал, вероятно, определенные черты духовной жизни древних греков. Греки создали непревзойденные скульптуры, удивительные по своему совершенству храмы и другие архитектурные сооружения, пропорции которых строго математически выверены. Это стремление к красоте, гармоничности, соразмерности, способствовало геометризации математики. Геометрический путь был гениальной находкой античных математиков, но он сдерживал развитие алгебры. Алгебраические методы, ростки которых возникли в более ранних цивилизациях, в Древней Греции не получили развития. Выделение алгебры в самостоятельную ветвь математики произошло в арабских странах, куда после распада Римской империи переместился центр научной деятельности. К концу VIII в. в результате захватнических войск арабы покорили почти все страны Средиземноморья, а на Востоке их владения простирались до самой Индии. Многие арабские халифы для укрепления своего могущества и славы поощряли развитие наук. В Багдаде, столице халифата, создаются новые условия для работы ученых. Здесь открыто много библиотек, построен Дом мудрости, при нём оборудована прекрасная обсерватория. Арабские математики на первых парах усердно изучают труды древнегреческих авторов и достижения индийских учёных. В Доме мудрости работал выдающийся узбекский учёный первой половины IX в. Ал-Хорезми. Его полное имя - Мухаммед ибн Мусса ал-Хорезми ал-Маджуси, что означает Мухаммед сын Музы из Хорезма из родов магов. Сохранились его сочинения по арифметике, астрономии, географии, календарным расчетам. Наиболее значительным является его трактат по алгебре. Здесь он впервые разработал правила преобразования уравнений. Трактат назывался «Краткая книга о восполнении и противопоставлении». В XII в. труд ал-Хорезми был переведен на латинский язык и долгое время оставался в Европе основным руководством по алгебре. Арабское название операции восполнения «ал-джебр» и дало название области математики, связанной с искусством решения уравнений. Вслед за ал-Хорезми решению уравнений посвящают свои труды многие арабские учёные. В XI в. знаменитый математик Омар Хайям описал геометрическое решение уравнений третьей степени. Занимался кубическими уравнениями и ал-Бируни. В XV в. работал замечательный математик и астроном ал-Каши. Он изучал уравнения четвертой степени. Арабов интересовало и численное значение корней. После успешного решения уравнений 3-й и 4-й степени математики пытались найти формулы решений уравнений более высоких степеней. Феррари решал уравнения 4-й степени. Эрендрид Вальтер фон Чирнгауз (1651 – 1708), Самуэль Бринг (1736 – 1798 г.г.) вели поиски решения уравнений пятой степени. Проблемой решения уравнений пятой степени в 30-е годы XVIII в. занимался величайший из математиков этого века Леонард Эйлер. Позже продолжил исследования в этом направлении другой выдающийся математик XVIII в. Жозеф Луи Лагранж. Его исследованиями теория алгебраических уравнений была поставлена на правильные рельсы: все до тех пор известное получается с единых позиций, четко выделены трудности. Большой вклад в историю решения алгебраических уравнений внесли Нильс Хенрик Абель (1802 г.р. – 1829 г.), Эварист Галуа (1811 г.р. – 1833 г.), жизнь которых оборвалась в раннем возрасте. Но труды их были не напрасны. Эти гениальные юноши построили фундамент современной алгебры. 6 7 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Общая характеристика методики изучения алгебраического материала Числовые выражения Введение элементов алгебры в начальный курс математики позволяет с самого начала обучения вести планомерную работу, направленную на формирование у детей таких важнейших математических понятий, как алгебраическое выражение (числовое выражение, буквенное выражение), равенство (числовое равенство, уравнение), неравенство (числовое неравенство, неравенство с одной переменной). Ознакомление с буквой и её использованием как символа, обозначающего отвлеченное число из известной детям области чисел, создает условия для обобщения многих из рассматриваемых в начальном курсе вопросов арифметической теории, является хорошей подготовкой к ознакомлению детей в дальнейшем с понятиями «переменная», «функция», способствует развитию у детей функционального мышления. Алгебраическая пропедевтика позволяет осуществлять преемственность в обучении алгебраическому материалу между начальной школой и средним звеном (5 – 7 кл.), готовит к усвоению материала систематического курса алгебры в среднем (7 – 9 кл.) и старшем звеньях образования. В основе организации процесса усвоения учащимися алгебраического материала лежат следующие положения: – алгебраические понятия вводятся в курс математики начальной школы в тесной взаимосвязи с изучением арифметического материала и получают свое развитие в зависимости от его содержания; – включение алгебраического материала в начальный курс математики должно, прежде всего, способствовать формированию у школьников абстрактного мышления и тем самым повышать уровень усвоения ими арифметических вопросов. Числовые (арифметические) выражения входят в систему обучения математике довольно рано, как только младшие школьники начинают знакомство с цифрами как способами именования вполне определенных конкретных чисел. При этом дети делают шаги по пути овладения математической символикой и математическим языком. В то же время, записывая число определенной последовательностью цифр, ребенок начинает знакомство с отвлеченным числом. Над такими отвлеченными числами можно производить арифметические действия, независимо от природы числа. Рассматривая числа как систему знаков, следует помнить, что операции над ними подчиняются точно сформулированным правилам. В этой системе и строятся числовые выражения, они составляются из числовых знаков (имен чисел) и знаков арифметических действий. Каждое число есть числовое выражение. Если два числовых выражения соединить знаком действия, то полученная запись также есть числовое выражение. Младшие школьники знакомятся с терминами «сумма», «разность», «произведение», «частное». В словарь учащихся вводятся названия арифметических действий, их компонентов (сложение, вычитание, умножение, деление, слагаемое, вычитаемое, уменьшаемое, делимое). Помимо терминологии, они должны также усвоить и некоторые элементы математической символики, в частности, знаки действий (плюс, минус). Эта работа осуществляется при изучении смысла арифметических действий. Далее полезно провести обобщение материала. С этой целью нужно раздать детям «арифметический конструктор». Он представляет собой набор цифр, знаков арифметических действий, букв, знаков математических отношений >, <, =. Детям предлагается рассмотреть содержимое «конструктора» и распределить на группы детали. Далее учащиеся рассказывают, что они знают о каждой группе объектов. Затем детям предлагается из чисел и знаков арифметических 8 9 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» действий «сконструировать» математические объекты 5 + 4; 9 ⋅ 2 + +3 – 1 ⋅ 7 + 12: 4 (каждый придумывает и записывает их в тетрадь), по 8 – 10 таких выражений. Затем преподаватель учит выделять род (записи) и вид (состоящие из чисел, соединенных знаками арифметических действий) и предлагает сформулировать определение понятия «числовое выражение». После этого нужно научить распознавать такие выражения среди различных объектов, тем самым школьники учатся выделять главное, существенное и формулировать определение данного понятия. Затем предлагается снова рассмотреть все полученные выражения и распределить их на группы по определенному признаку. Варианты: выражения соединены одним знаком 8 – 3 и более, чем одним (25 ⋅ 3 – 12). Удобно в данном случае одну группу выражений назвать простыми, а другую сложными (составными). При этом дети обобщают, углубляют знания о простых числовых выражениях. Так как математика описывает не непосредственно наблюдаемые предметы, явления, а абстрактные понятия, связанные с практикой, то переход от непосредственной практики к математическому описанию некоторой ситуации затруднен. Чтобы такой подход осуществить, нужно уметь выделить в рассматриваемой ситуации существенные с некоторой точки зрения характеристики, остающиеся неизменными во всех одинаковых ситуациях, отбросить все то, что несущественно, и перевести на математический язык. Рассмотрим вариант закрепления представлений о простых числовых выражениях на примере углубления знаний о понятии «сумма». I. Рассматривается задача: «У Коли 5 марок, ему подарили ещё 2 марки». Выделяются несущественные признаки данной реальной ситуации. Что неважно, несущественно в этом описании? (Какие марки у детей, какова стоимость этих марок, где хранятся, откуда взялись эти марки?) А что важно, существенно в данном описании? (Сколько марок стало у Коли?) Важна количественная характеристика. Дети выполняют предметные действия. Выложить слева столько квадратов, сколько марок у Коли, справа столько квадратов, сколько марок ему подарили. Что сделали с марками – подарили. Показать на предметах: + придвинуть объекты справа. Больше или меньше стало марок? (Больше). Далее детям предложить построить графическую модель, а затем перейти к математическому описанию 10 5 + 2. Аналогично рассматриваются ещё 3 – 4 подобные ситуации. В аквариуме было 5 рыбок, туда пометили ещё 2-х рыбок. В альбоме по рисованию у Вити 5 рисунков о войне, он нарисовал ещё 2 рисунка. В вазе лежало 5 груш, ещё положили 2 груши. Таня вымыла 5 тарелок, а потом ещё 2. Дети закрепляют умение выделять существенное, отбрасывать несущественное на данный момент, выполнять предметные действия, от них переходить сначала к графическому, а затем к математическому описанию. Далее учитель предлагает выделить сходство и отличие данных ситуаций. Что общего, чем отличаются? 5+2 карточка появляется на доске. II. Теперь предлагается рассмотреть другой вид реальной ситуации. В букете 3 василька и 5 ромашек. Что несущественно? (Где рвали цветы, каких они размеров, где находится букет и т.д.) Что существенно, важно? (Общая численность. Сколько всего цветов.) Дети выполняют предметные действия. Учитель предлагает слева выложить столько квадратов, сколько васильков в букете, справа столько кругов, сколько ромашек в букете, а затем объединить объекты. Задается вопрос: больше или меньше теперь объектов? (Больше). Далее дети под руководством учителя от предметных действий переходят сначала к графическому, а затем к математическому описанию. 3 + 5. 11 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Аналогично рассматриваются 3 – 4 подобные ситуации. * В пенале 3 карандаша и 5 ручек. * В вазе 3 яблока и 5 груш. * На столе стоят 3 кружки и 5 стаканов. * На полке 3 альбома и 5 книг. Затем учитель предлагает выделить отличия и сходства ситуаций 3 + 5 , карточки выставляются на доске. III . Предлагается рассмотреть еще такой вид ситуаций. В нашем доме 6 этажей, а в другом на 3 этажа больше. Что несущественно? (Где находятся дома, что в них расположено и т.д.). Что существенно? (Последовательное приписывание к элементам одного множества элементов другого множества). (Множества упорядочены). Дети снова выполняют предметные действия. Учитель предлагает выложить в верхний ряд столько кругов, сколько этажей в одном доме, а в нижний на 3 круга больше. Сколько объектов стало во 2 ряду? (Больше). Дети от предметных действий переходят сначала к графическому, а затем к математическому описанию. 6 + 3. Аналогично рассматриваются 3- 4 ситуации Для постройки башни Аня взяла 6 кубиков, а Алёна на 3 больше. Длина одного ужа 1 метр, а другого на 2 больше. Высота березы 6 метров, а сосны на 3 метра больше. Учитель предлагает сравнить ситуации и выяснить, чем они отличаются, а чем похожи. На доске появляется карточка 6 + 3 . (Больше на – это столько, сколько. . . да ещё). IV. Предлагается такой жизненный сюжет. Катя нарисовала 7 флажков, а Саша на 2 флажка больше. Что неважно, несущественно? (На какой бумаге рисуют дети, какого они размера и т.д.). А что важно? (Продвижение по натуральному ряду на столько шагов вправо от первого числа, каково второе число). 12 7 и 2 характеризуют место в последовательности, на котором остановились действия по рисованию флажков, причем Саша продвинулся на 2 флажка больше. . Дети выполняют действия с предметами, затем строят графическую модель, а затем математическую модель. На доске появляется карточка 7 + 2 . Аналогично рассматриваются ещё несколько подобных ситуаций. Таня вымыла 7 кружек, а Лена на 2 кружки больше. Миша сорвал 7 орехов, а Антон на 2 ореха больше. Вера сорвала с грядки 7 ягод клубники, а Катя на 2 ягодки больше. Эти ситуации сравниваются детьми. Они выделяют отличие, а затем сходство. Уточняют, что это математическое описание подобных ситуаций. Далее учитель предлагает рассмотреть все записи на карточках, которые появились на доске. Дети учатся видеть отличие и сходство. (Это числовые выражения. Числа соединены одним знаком арифметического действия +, следовательно, это просто числовые выражения). Дети вспоминают, что такие выражения называются суммой чисел. Используются словарные карточки, выделяются компоненты. сумма 1е слагаемое 2е слагаемое Учатся читать выражения по-разному: *к прибавить *к увеличить на *к; ; плюс; 13 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» * сумма чисел и; * первое слагаемое, второе слагаемое Условия данного факта представляют для младших школьников определенную трудность. (Найдите сумму чисел 9 и 1, запишите сумму чисел 9 и 1). В результате такого целенаправленного обобщения учащиеся усваивают смысл понятия «числовое выражение», «простое числовое выражение», «сумма». Затем через комплекс специального подобранных заданий закрепляются представления о сумме: * запишите сумму чисел и; * чему равна сумма чисел и; Здесь 3+2 яблок. и 5+1 конфет. 2+3= ; 14 + * Какие два числа из круга в сумме дают 12? 14 3 = 9; Какие два числа из круга в сумме дают 19? Какие два числа из круга в сумме дают 14? Какие два числа из круга в сумме дают 10? * Машина делает «числовые сардельки»: 5+3 1+7 2+6 . Машина сломалась, числа выходят в неправильном порядке, их надо переставить и разложить «по сарделькам»: 1 4 5 2 3 6 ... 4 7 . * Найти для каждой пары суммы равную пару из овала: * Заполни окошки = 19; 6 * 1 . Здесь Какие два числа из круга в сумме дают 12? Какие два числа из круга в сумме дают 10? Какие два числа из круга в сумме дают 5? . Учитель обращает внимание на двоякий смысл термина «сумма»: сумма – это результат действия сложения; сумма – это само выражение. * сравните суммы чисел * + 6 = 8. 1+6 5 + 3 5+5 4+5 1 + 2 6+7 7+5 7 + 8 6+7 2+2 8+6 Понятие «разность», «произведение», «частное» могут быть закреплены по аналогии с закреплением понятия «сумма». Далее учащиеся знакомятся с числовыми выражениями, содержащими два и более арифметических действия при усвоении вычислительных приёмов: ± 2, ± 3, ± 1. Они решают примеры вида 3 + 1 + 1; 6 – 1 – 1; 2 + 2 + 2 и др., вычисляя, например, значение первого выражения, ученик поясняет: «К трём прибавить один, получится четыре, к четырем прибавить один, получится пять». Тем самым дети постепенно готовятся к выводу правила о порядке действий в выражениях, 15 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» содержащих действия одной ступени (позже действия разных ступеней и со скобками). Процесс обобщения знаний о сложных числовых выражениях и о правилах выполнения действий над ними осуществляется позже (II, III, IV кл.). При этом работу рекомендуется организовать поэтапно. I этап. Детям предлагается «сконструировать» сначала простые числовые выражения и закрепить знания о них, а затем сложные числовые выражения, например: 3 + 4 – 2; 19 – 13 + 12 – 6 + 8. Учащиеся записывают подобные выражения в тетради. Затем детям даются описания ряда жизненных ситуаций: они по конкретному описанию строят математическую модель, записывая её в тетради. Например: * В альбоме было 12 марок. Туда положили 3 марки, затем достали 4 марки, потом еще 2, затем еще 3 марки. Опять положили 5 марок, еще 3 марки, снова достали 6 марок, положили 1 марку и потом еще 4 марки: 12 + 3 – 4 – 2 – 3 + 5 + 3 – 6 + 1 + 4 . * В вазе лежало 8 конфет. Дети съели сначала 2, а потом 3 конфеты. В вазу добавили 5 конфет, затем 2 и 4. Снова съели сначала 1 конфету, а потом 2 конфеты. Опять добавили 1 конфету, а затем съели 8 конфет: 8–2–3+5+2+4–3–1–2+1–8 . Дети сравнивают записи, выделяют отличия, сходство. Делают вывод, что такие числовые выражения являются сложными, что они содержат только действия сложения и вычитания (т.е. действия одной ступени). Надо определить значения выражения. Когда дети учатся описывать ситуации на математическом языке, они видят и понимают, что действия надо выполнять в той последовательности, в которой они происходили. Для более прочного осознания данного факта можно научить детей строить графическую модель выражений. Например, дано выражение 8 – 4 + 1 – 3 = 2 . 16 Построить график или по данному графику восстановить числовое выражение После выполнения подобных заданий младшие школьники формулируют правило: «Если числовое выражение содержит только действия сложения или вычитания, то действия выполняются в том порядке, в котором они записаны слева направо». В данном случае происходит не механическое заучивание правила, а его осознанное восприятие. С целью закрепления порядка действий в подобных случаях предложить задания. * Расставьте порядок действий: + – – + – – – + . * Найдите ошибку: 1 + 3 + 2 – 5 – 4 + . Расставьте порядок действий, впишите числа и определите значение выражения. 17 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» II этап. Далее дети практически овладевают другими правилами порядка выполнения действий в выражениях, содержащих скобки. Школьники по заданию учителя записывают в тетради числовые выражения, описывающее определенную жизненную ситуации, например: В вазу положили 3 яблока и 4 груши, затем два фрукта взяли. 3+4 3–2 – 2 Как показать, что сначала положили фрукты? (Обвести овалом). Дети, рассуждая, какие фрукты могли быть взяты, получают и такие записи: + 4 или 3–1 4–1 + или 3 + 4–2 . Дети вспоминают, что в этом случае математики договорились пользоваться скобками. (3 + 4) – 2 Сначала фрукты положили. (3 – 2) + 4 Сначала взяли 2 яблока. (3 – 1) + (4 – 1) Взяли по 1 яблоку и 1 груше. 3 + (4 – 2) Взяли 2 груши. Дети подходят к осознанию того факта, что действия в скобках выполняются прежде всего. Предлагаются задания. Расставьте порядок действий: + ()+ – – Найдите ошибку: (1 + 2)+ + (+ (3 +). – Составьте граф данного выражения)–(+)– По данному графу восстановить выражение Данные задания способствуют осознанию детьми нового правила и последующей грамотной формулировке ими этого правила. III этап. Далее обобщаются знания учащихся о правиле порядка выполнения действий в выражениях, не имеющих скобок, и содержат действия умножения и деления. Работу можно организовать так. Детям предложить записать в тетрадь готовые числовые выражения и дать указание «Найдите лишнее выражение»: 18: 2 × 4: 6 × 5 × 2: 10; 44 × 2: 4 × 3; 95: 5 × 2 × 2; 98 – 4 + 5 – 9. Затем предлагается рассмотреть оставшиеся записи. Выяснить, чем они отличаются, а чем похожи. Эти числовые выражения содержат только действия умножения и деления. После выполнения заданий вида «Расставьте порядок действий, постройте графическое выражение» и др. дети формулируют правило (аналогично 1 правилу). Уточняются задания о действиях умножения и деления – «сильные» действия – это действия I ступени. Сложение и вычитание – «слабые» действия – это действия II ступени. IV этап. Обобщая знания о правилах выполнения действий в выражениях, не имеющих скобок и содержащих действия разных ступеней, работу можно организовать по-разному, например, так. 18 19 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Можно предложить детям выписать значения выражения 40–10:2. Ответы могут получиться разные: у одних значения выражения окажется равным 15, у других 35. Мнения анализируются, после выполнения нескольких подобных задания дети формулируют новое правило, которое через решение специальным образом подобранных упражнений осознанно усваивается учащимися. * Поставьте вместо звездочек знаки действия так, чтобы равенства были верными: 38 * 3 * 7 38 * 2 * 5 = 24 38 * 3 * 7 = 42 38 * 3 * 7 = 48 12 * 6 * 2 = 4 12 * 6 * 2 = 70 12 * 6 * 2 = 24 12 * 6 * 2 = 9 12 * 6 * 2 = 0 * Из заданных пар выражений выпишите только те, в которых вычисления выполнены по правилам порядка действий: 60 – 20: 4 = 10 4 × 3 + 20: 5 = 16 60 – 20: 4 = 55 4 × 3 + 20: 5 = 28. Порядок выполнения действий в числовых выражениях +, – *, : Действия 2 ступени Действия 1 ступени +, – Сначала действия 1 ступени потом действия 2 ступени *, : (), + , – , *, : Сначала действия в () затем действия 1 ступени потом действия 2 ступени V этап. На данном этапе ведется работа по обобщению знаний учащихся о порядке действий в выражениях, содержащих скобки и арифметические действия разных ступеней: сложение, вычитание, умножение, деление. Детям предложить записать в тетрадь следующие числовые выражения: (18 + 2) : 5 + 4 × 8 – 6 × 2 + 35 – 80: 20 99 + 48: 6: 2 – (45 + 15) : 10 + (12 – 6) и найти их значения. После обсуждения мнений о правилах поиска значения выражений под руководством учителя дети формулируют правило выполнения порядка арифметических действий в подобных числовых выражениях. Затем вместе с детьми можно составить схему-опору. 20 важные сильные 21 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Числовые равенства и неравенства - практике обучения в начальных классах числовые выражения В с самого начала рассматриваются в неразрывной связи с числовыми равенствами и неравенствами. В математике числовые равенства и неравенства делятся на истинные и ложные. В начальной школе вместо этих терминов можно употреблять слова «верные», «неверные». Процесс обобщения знаний о числовых равенствах и неравенствах можно организовать по-разному, например, так. Дети имеют глубокое представление о числовых выражениях, о порядке выполнения действий, поэтому можно предложить написать разные числовые выражения и, выбирая по 2, соединять их знаками отношений < ; > ; =: 18 – 6 = 34 + 2 9–5>3+7 13 – 7 + 2 < 14 + 8. Сравнивая значения левой и правой частей данных записей, дети убеждаются в том, что числовые равенства и неравенства могут быть верными и неверными (в пассивный словарь детей вводятся термины «истинные», «ложные»). Дети учатся выделять существенные признаки подобных записей. Два числовых выражения, соединенные знаком равенства, образуют числовое равенство, а знаками неравенства – числовые неравенства. – Наличие 2-х числовых выражений. – Наличие в записи знака равенства или неравенства. Далее дети учатся по этим признакам распознавать их среди различных объектов. Затем дети должны осознать тот факт, что не всегда между двумя выражениями можно установить отношение равенства или неравенства. Для этого предложить учащимся найти значение ряда числовых выражений: 7 – 35; 48: 9; 64 – 118; 21: 5. Подвести детей к выводу, что не существует натурального числа, являющегося значением каждого из них. На множестве натуральных чисел выражения не имеют смысла. 4:(8 – 8) 9: 0 44: 0. Такие выражения тоже не имеют смысла на любом числовом множестве. Дети запоминают тот факт, что на нуль делить нельзя. 22 После закрепления данных заданий ученики смогут сделать вывод, что отношение равенства устанавливается между двумя числовыми выражениями, имеющими смысл. Два числовых выражения равны тогда и только тогда, когда их числовые значения совпадают. Программа по математике для начальной школы ставит перед учащимися задачу уметь сравнивать числовые выражения и записывать результат сравнения с помощью знаков. Школьники осуществляют сравнение двух выражений либо с опорой на наглядность, либо без наглядности, на основе использования теоретических знаний с применением элементов дедуктивных рассуждений. Предлагаемые задания помогут учащимся постепенно овладеть приемом сравнения. Это позволит им в дальнейшем самостоятельно применять его для использования изученного в новых условиях. Обучение сравнению числовых выражений с последующим обобщением знаний можно осуществить поэтапно. Для этого нужно уточнить тот факт, что каждое число есть числовое выражение. I этап. Сравнение чисел в натуральной последовательности. Его цель – показать учащимся возможность использования свойств натурального ряда для их сравнения. * Учащимся предлагается последовательность чисел: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 . . . Для каждого числа назовите предыдущее и последующие числа. Для любого числа можно назвать предыдущее число? Последующее число? Выберите любое число последовательности. Сравните его с предыдущим числом, последующим числом. Сформулируйте правило. Запишите результат сравнения с помощью знаков: 2 * 3 4 * 5 10 * 9 1 * 2. * Дана последовательность «сказочных» чисел: . 23 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» II этап. Сравните числа и выражения: Сравните и, и, и * Даны два соседних числа: A < B K > M M > N. Как называется число В для числа А? Число А для числа В? (Аналогично для других пар). * Может ли быть одновременно 1<2и1>2 > и < . * Закончите предложения так, чтобы они выражали верную мысль: «Если к числу прибавить 1, то оно станет. . .» «Если из числа вычесть 1, то оно станет. . . » а) больше; б) меньше; в) последующим; г) предыдущим; д) следующим. * Сравните числа в каждой тройке: 1, 2, 3 0, 7, 8 8, 9, 10. Запишите результат сравнения по образцу 2, 3, 4 2<3 2<3<4 2<4 3 < 4. * Дана тройка последовательных чисел: , Как называется число Число для числа А, B, C α, β, γ. для числа? ? Сравните числа в каждой тройке. Запишите результат сравнения с помощью знаков. Восстановите предложение: « . . ., то оно станет больше»; « . . . , то оно станет меньше»; « . . . , то оно не изменится». Не находя значения суммы, сравните: 3+0*3 2*2=0 4+4*1 5+1*5 6*6+2 6+3*6 Сравните: 3+5*5 4+1*1 2 + 7 * 7. Сравните, где возможно: +1* 24 3 * 3 + 2. ε + 0 * ε. 25 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» –1* –2* α+2* +2 . III этап. Сравнение числовых выражений (сложных). Сравните, не вычисляя: 3824: 4 * 4268: 4 3624: 2 * 3624: 3 85 – 18 * 85 – 15 24 + 36 * 24 + 6 25 × 147 * 31 × 154. Далее рекомендуется провести математические исследования по «открытию» некоторых свойств числовых равенств и неравенств: a = b(u) a > b(u) a + c = b + c(u) a + c > b + c (u) a × c = b × c (u) a × c > b × c(u) a: c = b: c (u) c ≠ 0 a: c > b: c(u) c ≠ 0. Далее разрабатываются карточки – задания, в которых требуется произвести ряд действий, выдвинуть гипотезу, сделать вывод. Сравните: (321 – 18) × 304 * (452 – 15) × 204. Жители острова Рокфор имели обычай казнить всех чужеземцев. Исключение составляли лишь те, кто справлялся с головоломками Стивенса – мудрейшего жителя этого острова. Разгадайте одну из них: Проверьте правильность решения с помощью вычислений. Таким образом, у младших школьников формируется осознанное представление о числовых равенствах и неравенствах, при этом продолжается работа по развитию логического, абстрактного мышления. 26 27 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Тождественные преобразования числовых выражений Прежде нужно закрепить знания о числовом выражении, о числовом равенстве. Запись выражения, имеющего смысл, другим выражением из того же класса эквивалентности, при которой оба выражения соединяются знаком равенства, называется тождественным преобразованием. Далее отрабатываются 2 правила, позволяющие преобразовывать числовые выражения так, чтобы каждое следующее было тождественно равно каждому из предыдущих: Каждое выражение можно заменить любым другим, тождественно ему равным. Выражение, получающееся из данного применения к нему свойств арифметических действий, является тождественно равным данному. Тождественные преобразования дают возможность получать новые знания. Например, 6 + 3 . Сначала 3 заменяется суммой 2 + 1, затем к 6 прибавляется 2 и к полученному результату прибавляется 1. Это можно записать в виде цепочки тождественных преобразований так: 6 + 3 = 6 + (2 + 1) = (6 + 2) + 1 = 8 + 1 = 9 (Новое знание, прием прибавления по частям). Здесь использованы оба правила. Действительно, сначала число 3 заменили равным ему выражением, затем применили свойство ассоциативности сложения, после чего 6 + 2 и 8 + 1 заменили равным им выражением. Тождественные преобразования числовых выражений требуют определенной изобретательности, основанной на анализе данного выражения, предшествующем самим преобразованием, а также на знании свойств арифметических действий. Кроме того, тождественные преобразования совершенно точно аргументированы и являются примерами правильных дедуктивных рассуждений. Овладение умением производить тождественные преобразования позволяет младшим школьникам применять на деле свойства арифметических действий, а следовательно, способствует их пониманию и запоминанию, развивает умение обосновывать свои 28 действия, приучает ум к дедукции. Овладение таким умением является очень важным с точки зрения подготовки младших школьников к изучению курса алгебры в среднем звене (и в дальнейшем). В методической литературе предлагаются задания для младших школьников, направленные на овладение тождественными преобразованиями. * Из данных записей выберите те, которые являются числовыми выражениями: 2 , + , 28: 4, (18 + 15) – (32 × 4), m + n, (29 – 32) : 5. * Найдите значения тех выражений, которые сможете вычислить: 2 + (5 – 4); (3 – 6) + 2; (8 + 12) – (5 – 5); (28: 1) – (28 × 1); (135 × 29) : (234 – 234). * Сравните выражения и найдите их значения: (8 + 6) : 2 + 22: 1 * (8 + 6: 2 + 22) : 11; (((42 – 2) – 4) : 9) – 3 * ((42 – 2) – 4) : (9 – 3). * С помощью тождественных преобразований найдите значения выражений: 168: 7 + 4 × 25 – 24; 28 000 + 12 000: 6 × 7 – 24: 8; 60 × 3: 2 × 6 – 81: 9; 630: 70 + (20 – 5) – (13 + 2). * Поставьте скобки в данном выражении так, чтобы его значение было равно 0; 40; 100:. 18 + 21: 3 – 5 × 5. * Составьте выражения, равные данному, так, чтобы количество действий увеличилось на одно, на два, на три: 63: 7 21 × 2 24 – 4. 29 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Буквенные выражения В начальных классах предусматривается проведение подготовительной работы по раскрытию смысла переменной в тесной связи с изучением нумерации и арифметических действий. Подготовительная работа проводится по уровням. 1 уровень – ознакомление с буквами латинского алфавита. Нужно объяснить детям, что на уроках математики будут использованы малые буквы латинского алфавита, научить писать, читать буквы, использовать для записи алгебраических выражений. 2 уровень – решение задач с недостающими данными. Предлагаются тексты, например, такие: Миша прочитал. . . книг и. . . сказок. Сколько всего книг прочитал Миша? Подбирая числа вместо точек, дети получают задачи одинакового содержания. Одну задачу подробно разбирают вместе с учителем, с остальными дети работают по аналогии. Задач можно составить много. Числа подбираются по мере изучения. 3 уровень – запись выражений, отражающих определенную ситуацию и выполнение расчетов. Желательно обыграть сюжет посещения детского кафе. Детям раздаются меню кафе. Они выясняют, что в кафе можно купить и по какой цене. Например: чай – 6 рублей, булочка – 12 рублей, сосиска в тесте – 17 рублей, кофе – 10 рублей и т.д. Учитель предлагает кратко записать содержание меню: ч – чай, к – кофе, в – вода (минеральная), б – булочка, г – гамбургер и т.д. Учатся записывать кратко заказ и просчитывать его стоимость. Например: ч + б + 2 г (чай, булочка, 2 гамбургера); 2 ч + 3 к + 5 с + 2 в. 4 уровень – определение значений выражений: 3 a + 8 – b при a = 5, b = 1; 7 y – 3 x: c при y = 2, x = 8, c = 6. На этапе ознакомления с буквенными выражениями дети работают с выражениями, содержащими «окошечки»: 30 ×2 +5 . Что означает «окошечко» (некоторое число); подставляя в него конкретное число, дети находят значение выражения. Затем анализируются записи заказов и выделяется их сходство и отличие. Договоримся (математически договорились) вместо «окошек», букв в заказе использовать малые буквы латинского алфавита a × 2 b + 5: c. Дети должны осознать, что буква – это некоторое число. Они учатся составлять различные записи типа 3 × a + b + c + 127; a x + b + 8 – 5; выделяют в них существенное: 1) запись; 2) состоит из чисел и букв, соединенных знаком арифметических действий. По этим признакам дети учатся распознавать подобные записи среди других. Младшие школьники, таким образом, получают представление о буквенном выражении. Нужно при этом использовать словарную карточку: Буквенное выражение Для овладения младшими школьниками представлений о буквенном выражении можно использовать такие типы заданий: Чтение буквенных выражение: x + y; a + b + c; 3 × a + 2 × b; 7 × x – y. Переход от буквенных выражений к числовым: b + d; b = 15; d = 3; 15 + 3, придавая буквам различные числовые значения, выяснить, сколько числовых выражений можно получить. Нахождение числовых значений буквенных выражений при заданных значениях букв: k – c, при k = 10, c = 2. Подбор детьми числовых значений букв, входящих в выражение и нахождение значения выражения c x m. 31 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Формирование понятия «постоянная»: 15 8 записать сумму 15 + 8 7 8 7+8 6 8 6+8 3 8 3+8 a 8 a + 8. Предложить понаблюдать за выражениями и спросить, что заметили? (2-е слагаемое одинаковое, постоянно). Преобразование таблицы с тремя графами в таблицу с двумя графами и наоборот: b m b–m 20 5 20 8 20 11 20 15 m 20 – m 5 8 11 15 Дети должны понять, что буква может принимать не только разные, но и одинаковые значения. Формирование понятия «область определения выражения» (в неявном виде): d – 25; 13 k; m + 13; 16: a; c: d. Какие значения может принимать переменная (буква)? Использование букв как средства обобщения знаний: – записывать при помощи букв свойства арифметических действий: a+b=b+a a + (b + c) = (a + b) + c; – записывать связь между компонентами и результатом действия: a + a + a + a + a = 5 × a 8 b = b + b + b + b + b + b + b + b; – прочитать записанные с помощью букв свойства, отношения, зависимости: a>b (a + b) – c a × b = b × a; – выполнить тождественные преобразования на основе знания свойств арифметических действий (5 + с) × 4; – доказать справедливость высказываний при помощи числовых подстановок: c + 12 > 1 + 10 d × 1 = d. 32 В алгебре символы служат для обозначения предметов. – Встречаются ли в жизни графические символы? (ДА). Детям предлагается рассмотреть ряд символов и ответить, что они означают: $ & – Придумать и нарисовать знаки-символы «не кричать», «учителям вход воспрещен», «твое имя», «парк отдыха», «продукт несъедобен». – Написать символы для каждой из картинок. Сложить символы. Например: a + 2a + 4a = 7a b + 5b + 6b = 10a + 3a + 2a = 9p +20p + 8p = 14p +20p + p = a + 5a + 16a = 15x + 5x + 16x = q + 7q + 10q + q = 2m + 3m + 2m + 10m = 12a + 10a + a = 15d + 10d + d + 4d = 33 4s + 3s + 7s = t + 2t + t + 5t = 26a + a + 2a + 3a = 15z + 12z + z + z = 20x + 17x + 3x = . Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Например: 2a + 3a + 3b + b = 5a + 4b a + 2a + 3b = 2a + 5a + 4b + 2b = 4s + s + 3r + s = 5q + p + 2p + 6q = 3x + 2y + x + 5y = 10a + 2c + a + 3c = h + h + 5h + 2j = 2s + 5s + x + s = 5x + x + t + 8t = 4e + 8c + 5e + c = 12a + d + 9a + d = b + 19k + 8k + 9b = 6p + 2t + 5p + 4t = 10p + 4q + q + 2q = 7t + q + 3q + 3t = 4k + 6y +k + 3y = e + e + t + 9e + t = 10y + x + 21y + y = . Внимание: разные символы не складываются, не вычитаются. Вывод: использование буквенной символики способствует повышению уровня знаний, приобретаемых младшими школьниками, готовит их к изучению систематического курса алгебры. Уравнения в начальном курсе математики Уравнение в начальном курсе математики трактуется как равенство, содержащее букву. Решить уравнение – значит узнать, при каких значениях буквы уравнение обращается в верное равенство. Одной из целей введения уравнений в начальный курс математики является обеспечение преемственности между начальным и средним звеном общеобразовательной школы. Понятие «уравнение» является одним из основных понятий математики. Можно выделить 3 этапа формирования представлений об уравнении в начальной школе. 1 этап – подготовительный. На этом этапе работа осуществляется по двум направлениям: 1) условие связи между компонентами и результатом арифметических действий: 7 + 8 = 15 34 – 11 = 23 15 – 7 = 8 23 + 11 = 34 15 – 8 = 7 34 – 23 = 11 18 × 2 = 36 36: 18 = 2 36: 2 = 18 45: 5 = 9 9 × 5 = 45 45: 9 = 5 . Нужно добиться, чтобы дети усвоили 8 правил. (Если из суммы вычесть первое слагаемое, то получим второе слагаемое и т.д.). Осознание учащимися этих правил осуществляется в процессе выполнения практических упражнений, при решении простых задач, при изучении состава числа; 2) подбор специальных упражнений – записей с «окошками», в процессе выполнения которых у младших школьников формируется представление о переменной, верном и неверном числовом равенстве. Такие задания решаются способом подбора. Этот способ формирует осознанный и математически верный подход к решению уравнений, так как ученик сразу ориентируется на то, что подобранное им число он должен проверить, т.е. подставить его и выяснить, верное или неверное числовое равенство получили. 34 35 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» ‪ + 3 = 12. Так, подставляя в «окошко» число 5, ученик убежда- ется, что при этом получится неверное числовое равенство 5 + 3 = 8 , а число 9 – верное числовое равенство. В практике обучения чаще используют только такие задания, в этом случае функции заданий сужаются до закрепления состава чисел, и способ подстановки теряет свой алгебраический смысл. Поэтому лучше задания формулировать так: «Какое равенство получим, если вставить в окошечко число 10», или «Объясни, почему числа 1, 2, 9, 5 нельзя вставить в окошко», или «Какое число нужно вставить в окошко, чтобы получить верное равенство». При подборе чисел ученик должен подумать, с какого числа его целесообразно начать. Идет подготовка к проверке решения уравнения. При нахождении значений числовых выражений учащиеся могут воспользоваться как знанием состава числа, так и вычислительными приемами (присчитывание и отсчитывание по частям). Способ подбора формирует не только осознанный подход к решению уравнений, но и предоставляет ученику возможность упражняться в закреплении вычислительных навыков и приемов. 2 этап. На этом этапе идет знакомство с уравнением и способами его решения. Введение понятия «уравнение» фактически сводится к замене «окошка» латинской буквой. (В математике принято неизвестные, входящие в уравнение, обозначать строчными буквами латинского алфавита x, y, z …): ‪ + 5 = 12 ‪ - 8 = 20 x + 5 = 12 y - 8 = 20 . Вводится термин «уравнение». Дети учатся выделять существенные признаки данного понятия и распознавать их среди других математических объектов. = 9 и 6 + z = 9 позволяет Сравнение двух видов записей 6 + детям самостоятельно справиться с поиском решения уравнения способом подбора. Нужно подчеркнуть, что именно такой метод ясно показывает смысл понятий «уравнение», «корень (решение) уравнения». Чтобы дети запомнили эти термины, можно использовать стихотворение: ‪ 36 Уравнение Когда уравнение решаешь, дружок, Ты должен найти у него корешок. Значение буквы проверить несложно. Поставь в уравнение его осторожно. Коль верное равенство выйдет у вас, То корнем значения зовите тотчас. Пусть требуется решить уравнение х + 12 507 = 206 734. Решить уравнение – это значит найти такое число, прибавляя к которому 12 507, получили 206 734. Можно заметить, что искомое число приблизительно равно 200 000. Но 200 000 + 12 507 = 212 507, что больше 206 734 примерно на 6000. Поэтому проверим число 194 000, получим 194 000 + 12 507 = 206 507, что меньше, чем 206 734. Увеличим число 194 000 на 200, получим 194 200 + 12 507 = 206 707, что меньше числа 206 734 на 27. Поэтому в качестве решения уравнения можно взять число 194227. Проверим 194 227 + 12 507 = 206 734. Таким образом, корнем данного уравнения является число 194 227. Все рассуждения, связанные с подбором решения уравнения и его проверкой, осуществляются устно. Способ подбора формирует у учащихся умение «оценивать», «анализировать» записанное уравнение, что создает благоприятные условия для решения уравнений с помощью «правил», например: х + 217 = 576 х = 576 – 217 х = 359 ответ: х = 359. 359 + 217 = 576 576 = 576 (u) При решении уравнений детям полезно использовать памятку «Как решить уравнение»: 1. Прочитай уравнений по-разному. 2. Назови, что известно, что неизвестно. 3. Вспомни, как найти это неизвестное. 4. Найди это число, используя нужное правило. 5. Сделай проверку. 6. Запиши ответ. 37 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» 3 этап. На этом этапе закрепляются представления об уравнении. Несмотря на то, что умение решать уравнения само по себе важно, значение уравнений выявляется только тогда, когда они применяются для решения задач практического содержания, т.е. выступают как метод моделирования конкретных фрагментов действительности. Составить уравнение: У шофера две одинаковые канистры с бензином. Обе неполные. В одной не хватает 8 литров, в другой – 4 литра. Чтобы освободить одну из канистр, шофер перелил весь бензин в одну канистру, но она осталась неполной. В ней не хватило 2 литра. Какова вместимость каждой канистры. х–8+х–4+2=х х–4=8–2 х = 10 л. Каждая канистра имеет объём 10 литров. Неизвестное число увеличили на 120, получили 270. Чему равно неизвестное число? Задуманное число уменьшили на 30, получили 180. Какое число задумали? Дети учатся по данному тексту составлять уравнения, а затем его решают. Полезно предлагать детям решать «задачи с весами». Чаши весов сбалансированы (весы находятся в равновесии). х + х = 10 2х = 10 х = 5 х = 3. 38 х + х + х + х =12 х × 4 = 12 х = 12: 4 Груз лежит на одной чаше весов, а гири на другой чаше: х + х + х = х + х = 10 3х = 2х + 10 3х – 2х = 2х – 2х + 10 х = 10. 25 + 4х = 5х 4х = 2х + 20. Груз лежит на обеих чашах весов. Можно предложить еще ряд заданий, направленных на овладение понятиями «уравнение», «решение уравнения» и методами решения простейших уравнений. Задание 1. 1.1. Сравнить выражения: 12 + 0 12 + 2 12 + 5 12 + 8 12 + 20 12 + 28 12 + 100. Найти значение каждого из этих выражений. Можно ли записывать эти выражения как 12 + х. Придумать еще выражения, которые так же можно записать. Какими числами заменили х в выражении 12 + х, если получились равенства: 12 + х = 12 + 5 12 + х = 12 + 34 12 + х = 12 + 370. 1.2. Верны ли равенства: 72: 3 = 6 × 4 72: 3 + 5 = 6 × 4 + 5 72: 3 + х = 6 × 4 + х 72: 3 + 20 = 6 × 4 + 20 72: 3 + 16 = 6 × 4 + 16 72: 3 × 2 = 6 × 4 × 2 39 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» 72: 3 × 5 = 6 × 4 × 5 72: 3 × х = 6 × 4 × х 72: 3 × 10 = 6 × 4 × 10 72: 3 – 4 = 6 × 4 – 4 72: 3 – 20 = 6 × 4 – 20 72: 3 – х = 6 × 4 – х 72: 3 – 12 = 6 × 4 – 12 72: 3: 3 = 6 × 4: 3 72: 3: 12 = 6 × 4: 12 72: 3: х = 6 × 4: х 72: 3: 6 = 6 × 4: 6. Какие числа нельзя поставить вместо х в двух последних равенствах из правого столбика? 1.3. Найти 5 чисел, которые можно поставить вместо х в выражение 8 – х, и найти его соответствующее значение. Найти 5 чисел, которые нельзя поставить в это выражение вместо х. Найти значения выражения 28 – х при х = 0, х = 15, х = 16, х = 18. При каком значении х выражение 28 – х = 12? х + 17 = 24? х + 17? При х = 2, х = 6, х = 3, х = 5, х = 10. 3.1. Найти значения выражений: 25 + 3 – 25 12 + (15 - 12) 102 + 24 – 102 7 + (8 – 7) 78 + 15 – 78 4 + (36 – 4) 16 + 18 – 18 78 + (150 – 78) a+b–a a + (b – a). 3.2. Найти значения выражения: 2 × 3: 2 15 × (45: 15) 17 × 5: 17 12 × (36: 12) 36 × 3: 36 3 × (21: 3) 172 × 4: 172 4 × 28: 4 a×b:a a × (b: a). 3.3. Найти, какому выражению равны данные выражения: 13 + х – 13 54 + (х – 54) 18 × х: 18 12 × (х: 12) 72 + х – 72 7 + (х – 7). 3.4. Найти значения х, при котором справедливы следующие равенства: х + 2 – 2 = 5 – 2 х × 5: 5 = 30: 5 34 + х – х х + 7 – 7 = 12 – 7 108: х × х 28 + х – х. 3.5. К обеим частям данного равенства прибавить число, чтобы получилось х: х – 5 = 7 х – 12 = 3 х – 21 = 5 х – 4 = 16. 3.6. Из обеих частей данных равенств вычесть такое число, чтобы получилось х: х + 5 = 9 х + 17 = 20 х + 43 = 65 х + 14 = 81. 3.7. Обе части равенства раздели на такое число, чтобы получилось выражение равное х: х × 5 = 30 х × 8 = 48 х × 15 = 60. 3.8. Записать еще два верных равенства, если данные равенства справедливы: 12 + 24 = 36 78 + 102 = 180 74 + 330 = 404 a+b=c 17 + х = 20 х + 5 = 12 х + 8 = 28 27 + x = 34. 3.9. Найти, при каком значении переменной х равенства справедливы, т.е. решить уравнения, записанные этими равенствами. Каждое уравнение решить тремя способами: а) подобрать подходящее число; б) записать равенство, которое выполняется одновременно с данным; в) прибавить (вычесть, умножить, разделить) к обеим частям равенства одно и то же число: х + 17 = 20 х – 6 = 13 х × 3 = 42 х: 6 = 54. 3.10. Решить уравнение таким способом, который нравится или является более простым: 29 + х = 32 6 + х = 4 12 × х = 36 72: х = 12. 40 41 Задание 2. 2.1. Найти значение данных выражений при указанных значения х. Заполнить таблицу: х 12 + х 15 – х 3×х 120: х 0 2 4 5 2.2. Заполнить таблицу. Найти такое число, заменяющее х, при котором оба выражения равны: х 22 – х 4+х 5 6 8 10 2.3. Ничего не вычисляя, найти равные выражения и записать равенства: 54: 6 + 12 = 3 × 3 + 12 (102 – 90) : 2 = 12: 2 (12 + 15) × 3 = (36 - 9) × 3. Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Обучение младших школьников решению задач алгебраическим методом Текстовые вычислительные задачи – одна из наиболее важных составляющих школьного курса математики. Решение этих задач играет большую роль в общем развитии школьников, в интересе к математике, оно знакомит учащихся с процедурой математического моделирования. Решение текстовой задачи состоит из трех частей: – перевод условия на математический язык (конструирование математической модели задачи); – оперирование полученной моделью с использованием математического аппарата и получение результата на языке математики; – перевод полученного результата на естественный язык и его интерпретация. Эти три шага составляют процедуру математического моделирования. Вооружать умением математического моделирования нужно уже в начальной школе. Поэтому младших школьников нужно познакомить с решением задач на составление уравнений – алгебраическим методом. Он состоит из следующих шагов: 1) введение неизвестного; 2) выражение через это неизвестное величин, о которых говорится в задаче; 3) составление уравнения; 4) осмысление результата и формулирование ответа. Конечной целью перевода при алгебраическом решении – математической моделью задачи – является уравнение. Пример. Задача 1. На дереве сидят жуки и пауки. Всего их 20, а ног 150. Сколько на ветке жуков? (У жука 6 ног, у паука 8). Уравнение: х × 6 + (20 – х). Задача 2. Одна из сторон прямоугольника на 3 см больше другой, а периметр равен 30 см. Чему равны стороны прямоугольника? Схема уравнения: (первая сторона + вторая сторона) × 2 = 30 см. х см – первая сторона; х + 3 см вторая сторона; (х + (х + 3)) × 2 = 30. Задача 3. В одном ящике было гвоздей в 2 раза больше, чем в другом. Когда из первого ящика взяли 30 гвоздей, а во второй ящик положили 70 гвоздей, то в обоих ящиках гвоздей стало поровну. Сколько гвоздей было в каждом ящике первоначально? Схема уравнения: (стало гвоздей в 1 ящике) = (стало гвоздей во 2-ом ящике). х – число гвоздей во 2 ящике первоначально. х × 2 число гвоздей в первом ящике. Уравнение: х × 2 – 30 = х + 7 Задача 4. В трех классах всего 83 учащихся. В первом классе на 4 ученика больше, чем во втором, и на 3 меньше, чем в третьем. Сколько учеников в каждом классе? Схема уравнения: (первый класс) + (второй класс) + (третий класс) = 83 ученика. х учеников во 2 классе. Уравнение: (х + 4) + х + (х + 4 + 3) = 83. Схема уравнения: Ноги жуков + ноги пауков = 150 ног. х – число жуков; (20 - х) – число пауков. 42 43 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Неравенство с переменной Обучение младших школьников элементам алгебры Младшие школьники встречаются с неравенствами с одной переменной уже в 1 классе, где такие неравенства задаются при помощи «окошка», например, Основное содержание ‪ ‪ ‪ + 5 < 8 7+3< 8+1> . Дети должны поставить в «окошко» такие числа, чтобы запись была верной. Далее, после введения букв, неравенства предлагаются в таком виде: х + 5 < 8 7 + 3 < z. В начальной школе неравенства решаются только методом подбора. Задания предлагаются в такой формулировке: – Какие из чисел 15, 180, 251, 6 удовлетворяют неравенству z > 83, а какие ему не удовлетворяют? Почему? – Какие из чисел 64, 71, 60, 75, 8, 0 являются решениями 65– х >5? Докажи. – Будет ли число 7 решением неравенства: 17 + х > 40 48: t > 1 a + a < 30 3 + y < 95 56 – n < 39 0: b > 5? – Имеются ли среди чисел 7, 9, 15, 30, 82 решения неравенства: 8 x b – 8 > 90 d: 3 + 9 < 12? – Найти два решения неравенства: r + 5 < 815 53 × m < 100 m – 4 > 960 180: y > 20. – Найти все решения неравенства: 7 × c < 9 x × 7 < 21 b+b<4 16: d > 3 y × 5 < 1 3 – t > 2. – Записать множество решений неравенства и отметить его на числовом луче. Существует ли в этом множестве наименьший элемент? Работа с неравенствами в начальной школе в основном направлена на формирование понятия «переменная» и с точки зрения обучения решению неравенств носит пропедевтический характер. 44 Алгебраическая линия в начальном курсе математики. Числовые выражения, числовые равенства, неравенства. Выражения с переменной. Уравнения, неравенства с переменной функцией. Изучение в начальных классах математических выражений (числовых и с переменными). Изучение числовых равенств и неравенств. Обучение решению уравнений. Функциональная пропедевтика в начальных классах. Требования к знаниям и умениям студентов по теме. Студент должен: – свободно владеть алгебраическим содержанием на уровне средней школы; – знать вопросы алгебраического характера, включенные в начальный курс математики, уровень обобщения при их раскрытии, последовательность обучения; – арифметические вопросы, усвоению которых способствует знакомство с алгебраическим материалом; – наглядные пособия, используемые при изучении алгебраического материала; – виды упражнений алгебраического характера; – дидактические игры, которые можно использовать при изучении алгебраического материала; – различные виды, формы и методы проверки усвоения алгебраического материала. Уметь: – реализовать в практике обучения взаимосвязь арифметического материала и элементов алгебры; – направленно применять соответствующие наглядные пособия; – использовать в обучении упражнения алгебраического характера; – целенаправленно использовать дидактические игры, способствующие усвоению алгебраического материала; 45 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» – подбирать проверочные задания, составлять самостоятельные письменные работы с элементами алгебры; – выделять основные знания и умения учащихся по теме; – работать с научной и научно-популярной литературой, связанной с алгебраическим содержанием. Доклады: 1. Методика использования исторического и занимательного материала при изучении элементов алгебры в начальной школе. 2. Жизнь и творчество Ал-Хорезми. 3. Роль Ал-Хорезми в развитии алгебры. 4. Любимцы богов. 5. Формирование функционального мышления у младших школьников при обучении математики. Список литературы 1. Виленкин, Н. Я. За страницами учебника математики [Текст] / Н. Я. Виленкин, Л. П. Шибасов, З. Ф. Шибасова. – М.: Просвещение, 1996. – С. 160 – 164. 2. Глейзер, Г. И. История математики в школе: IV – VI классы: пособие для учителей [Текст] / Г. И. Глейзер. – М.: Просвещение, 1981. 3. Сираждинов, С. Х. Ал – Хорезми выдающийся математик и астроном средневековья [Текст] / С. Х. Сираждинов, Г. П. Матвиевская. – М.: Просвещение, 1983. 46 Список литературы 1. Бантова, М. А. Методика преподавания математики в начальных классах [Текст] / М. А. Бантова, Г. В. Белотюкова. – М.: Просвещение, 1984. – 201 с. 2. Белашистая, А. В. Обучение математике в начальной школе [Текст] / А. В. Белашистая. – М.: Айрис Пресс, 2006. – 168 с. 3. Виленкин, Н. Я. За страницами учебника математики: Арифметика, алгебра, геометрия [Текст] / Н. Я. Виленкин, Л. П. Шибасов, З. Ф. Шибасова. – М.: Просвещение, 1996. – 315 с. 4. Вопросы общей методики преподавания математики: методические рекомендации [Текст] / сост. Е. И. Жилина. – Магнитогорск. МГПЦ, 1995. – 56 с. 5. Государственный благотворительный стандарт высшего профессионального образования [Текст]. – М., 2005. – 33 с. 6. Депман, И. Я. За страницами учебника математики [Текст] / И. Я. Депман, Н. Я. Виленкин. – М.: Просвещение, 1989. –175 с. 7. Депман, И. Я. Рассказы о старой и новой алгебре [Текст] / И. Я. Депман. – Л.: Детская литература, 1967. – 144 с. 8. Истомина, Н. Б. Методика обучения математике в начальных классах: учебное пособие [Текст] / Н. Б. Истомина. – М.: Академия, 2007. – 208 с. 9. Истомина, Н. Б. Методика преподавания математики в начальных классах: Вопросы частной методики [Текст] / Н. Б. Истомина. – М.: Просвещение, 2006. – 125 с. 10. Колягин, Ю. М. Методика преподавания математики в средней школе: общая методика [Текст] / Ю. М. Колягин. – М.: Просвещение, 1975. – 203 с. 11. Левитас, Г. Г. Решение текстовых задач с помощью уравнений [Текст] / Г. Г. Левитас // Начальная школа. – 2001. – № 1. – С. 76–79. 12. Меерзон, А. Е. Пособие по математике для студентов факультетов начальных классов [Текст] / А. Е. Меерзон, А. С. Добротворский, А. Л. Чекин. – М.: Просвещение, 1988. – 146 с. 13. Смирнова, В. В. Обучение решению уравнений в начальных классах [Текст] / В. В. Смирнова // Начальная школа плюс. – 2003. – № 11 – С. 56–59. 14. Стойлова, Л. П. Математика [Текст] / Л. П. Стойлова. – М.: Просвещение, 2008. – 327 с. 15. Шадрина, И. В. Обучение математике в начальных класса: пособие для учителей, родителей, студентов педвузов [Текст] / И. В. Шадрина. – М.: Школьная пресса, 2003. – 143 с. 47 Copyright ОАО «ЦКБ «БИБКОМ» & ООО «Aгентство Kнига-Cервис» Учебное издание Валентина Ивановна Кузьминова Элементы алгебры в курсе математики для учащихся начальных классов Учебно-методическое пособие Зав. РИО Редактор Корректор Верстка Дизайн обложки Л. В. Малышева Л. Г. Абизяева Л. В. Кравченко Е. В. Ворониной Е. В. Ворониной Сдано в набор 11.03.2011. Подписано в печать 6.07.2011. Бумага для копировальной техники. Формат 60х84/16. Гарнитура «Times New Roman». Печать цифровая. Усл. печ. листов 2,79. Тираж 100 экз. Заказ № 270. Отпечатано в редакционно-издательском отделе ГОУ ВПО «Соликамский государственный педагогический институт» 618547, Россия, Пермский край, г. Соликамск, ул. Северная, 44.

Основными целями изучения алгебраического материала в начальных классах является получение младшими школьниками первоначальных сведений о равенствах и неравенствах, о переменной, о равенствах и неравенствах с переменной, о математических выражениях (числовых и буквенных), о вычислении их значений, о несложных уравнениях и неравенствах, обучение школьников способам их решения, а также решению задач алгебраическим способом. Изучение алгебраического материала в начальных классах способствует обобщению понятий о числах, арифметических действиях и их свойствах, является подготовкой к изучению алгебры в старших классах

Первые представления о равенствах и неравенствах дети получают при сравнении множеств и чисел. Их изучение связывается с изучением нумерации, арифметических действий и величин. Далее вводится представление о верных и неверных равенствах и неравенствах, о равенствах и неравенствах с переменной.

Уравнение рассматривается как равенство с переменной. Решить уравнение – значит подобрать такое значение переменной, при подстановке которого в уравнение оно обращается в верное числовое равенство. На этом основан способ решения уравнений подбором. В начальных классах уравнения решают также на основе взаимосвязи между компонентами и результатами арифметических действий, на основе применения основных свойств равенств (система Л.В.Занкова), а также с помощью графов (УМК «Начальная школа 21 века»). Решение неравенств ограничивается способом подбора. Уравнения и неравенства используются при решении задач, однако, алгебраический способ решения задач ограничивается в начальных классах уровнем ознакомления.

Понятия о простейших выражениях формируются в связи с изучением арифметических действий, затем вводятся сложные выражения и выражения с переменной. Младшие школьники учатся вычислять значения сложных числовых выражений, используя правила порядка действий. Они учатся также находить значения выражений с переменной при заданных значениях букв.

Буквенная символика используется при обобщении записи законов и свойств арифметических действий, а также формул для вычисления площадей прямоугольников, треугольников, многоугольников, объёмов, скоростей и др.

В настоящее время наблюдаются две кардинально противоположные тенденции в определении объёма содержания алгебраического материала в курсе математики начальной школы. Одна тенденция связана с ранней алгебраизацией курса математики начальных классов. Представителями этой тенденции являются И.И.Аргинская, Э.И.Александрова, Л.Г.Петерсон, В.Н.Рудницкая и др. Другая тенденция связана с введением алгебраического материала в курс математики начальной школы на его завершающем этапе, в конце 4 класса (Н.Б.Истомина) Учебник традиционной школы (М.И.Моро и др.) является представителем «срединных» взглядов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Методика изучения алгебраического материала

Лекция 1. Математические выражения

1.1 Изучение понятия "математическое выражение"

Алгебраический материал изучается, начиная с 1 класса в тесной связи с арифметическим материалом и геометрическим. Введение элементов алгебры способствует общению понятий о числе, арифметических действиях, математических отношениях и вместе с тем готовит детей к изучению алгебры в следующих классах.

Основными алгебраическими понятиями курса являются "равенство", "неравенство", "выражение", уравнение". Определений данных понятий в курсе математики начальных классов нет. Учащиеся уясняют эти понятия на уровне представлений в процессе выполнения специально подобранных упражнений.

Программой по математике в 1-4 классах предусматривается научить детей читать и записывать магматические выражения: ознакомить с правилами порядком выполнения действий и научить ими пользоваться при вычислениях, ознакомить учащихся с тождественными преобразованиями выражений.

При формировании у детей понятия математического выражения необходимо учитывать, что знак действия, поставленный между числами имеет двоякий смысл; с одной стороны, он обозначает действие, которое надо выполнить над числами (например, 6+4 - прибавить 4); с другой стороны, знак действия служит для обозначения выражения (6+4 - это сумма чисел 6 и 4).

В методике работы над выражениями предусматривается два этапа. На первом из них формируется понятие о простейших выражениях (сумма, разность, произведение, частное двух чисел), а на втором - о сложных (сумма про, изведения и числа, разность двух частных и т.д.).

Знакомство с первым выражением - суммой двух; чисел происходит в 1 классе при изучении сложения в вычитания в пределах 10. Выполняя операции над множествами, дети, прежде всего, усваивают конкретный смысл сложения и вычитания, поэтому в записях вида 5+1, 6-2 знаки действий осознаются ими как краткое обозначение слов "прибавить", "вычесть". Это находит отражение в чтении (к 5 прибавить 1 равно 6, из 6 вычесть 2 равно 4). В дальнейшем понятия об этих действиях углубляются. Учащиеся узнают, что, прибавляя несколько единиц, увеличиваем число на столько же единиц, а вычитая - уменьшаем его на столько же единиц. Это также находит отражение в новой форме чтения записей (4 увеличить на 2 равно 6, 7 уменьшить на 2 равно 5), Затем дети узнают названия знаков действий: "плюс", "минус" и читают примеры, называя знаки действий (4+2=6, 7-3 =4),

Ознакомившись с названиями компонентов и результатом действия сложения, учащиеся используют термин "сумма" для обозначения числа, являющегося результатом сложения. Опираясь на знания детей о названиях чисел при сложении, учитель поясняет, что в примерах на сложение запись, состоящая из двух чисел, соединенных знаком "плюс", называется так же, как и число, стоящее по другую сторону от знака "равно" (9 сумма" 6+3 - тоже сумма). Наглядно изображается это так:

Чтобы дети усвоили новое значение термина "сумма" как название выражения, даются такие упражнения: "Запишите сумму чисел 7 и 2; вычислите, чему равна сумма чисел 3 и 4; прочитайте запись (6+3), скажите, чему равна сумма; замените число суммой чисел (9= ?+?); сравните суммы чисел (6+3 и 6+2), скажите, какая из них больше, запишите со знаком "больше" и прочитайте запись". В процессе таких упражнений учащиеся постепенно осознают двоякий смысл термина "сумма": чтобы записать сумму чисел, надо их соединить знаком "плюс"; чтобы найти значение суммы, надо сложить заданные числа.

Примерно в таком же плане идет работа над следующими выражениями: разностью, произведением и частным двух чисел. Однако теперь каждый из этих терминов вводится сразу и как название выражения, и как название результата действия. Умение читать и записывать выражения, находить их значение с помощью соответствующего действия вырабатывается в процессе многократных упражнений, аналогичных упражнениям с суммой.

При изучении сложения и вычитания в пределах 10 включаются выражения, состоящие из трех и более чисел, соединенных одинаковыми или различными знаками действий вида: 3+1+1, 4-1-1, 2+2+2. Вычисляя значения этих выражений, дети в выражениях овладевают правилом о порядке выполнения Действий в выражениях без скобок, хотя и не формулируют его. Несколько позднее детей учат преобразовывать выражения в процессе вычислений: например: 7+5=3+5=8. Такие записи являются первым шагом в выполнении тождественных преобразований.

Знакомство первоклассников с выражениями вида: 10 - (6+2), (7-4)+5 и т.п. готовит их к изучению правил прибавления числа к сумме, вычитания числа из суммы и др., к записи решения составных задач, а также способствуют более глубокому усвоению понятия выражения.

Методика ознакомления учащихся с выражением вида: 10+(6-2), (7+4)+5 и т.п. готовит их к изучению правил прибавления числа к сумме, вычитания числа из суммы и др., к записи решения составных задач, а также способствуют более глубокому усвоению понятия выражения.

Методика ознакомления учащихся с выражением вида: 10+(6-2), (5+3) -1 может быть различной. Можно сразу учить читать готовые выражения по аналогии с образцом и вычислять значения выражений, поясняя последовательность действий. Возможен и другой путь ознакомления детей с выражениями данного вида - составление этих выражений учащимися из заданного числа и простейшего выражения.

Умение составлять и находить значение выражений используется учащимися при решении составных задач, вместе с тем здесь происходит дальнейшее овладение понятием выражения, усваивается конкретный смысл выражений в записях решений задач. Полезно в этом плане упражнение: дается условие задачи, например, "У мальчика было 24 рубля. Мороженое стоит 12 рублей, а конфета - 6 рублей". Дети должны объяснить, что в этом случае показывают следующие выражения:

Во втором классе вводятся термины "математическое выражение" и "значение выражения" (без определения). После записи нескольких примеров в одно действие учитель сообщает, что эти примеры иначе называются математическими выражениями.

По заданию учителя дети сами составляют различные выражения. Учитель предлагает вычислить результаты и поясняет, что результаты иначе называют значениями математических выражений. Затем рассматриваются и более сложные математические выражения.

В дальнейшем при выполнении различных упражнений сначала учитель, а затем и дети употребляют новые термины (запишите выражения, найдите значение выражения, сравните выражения и т.п.).

В сложных выражениях знаки действий, соединяющие простейшие выражения, также имеют двоякий смысл, что постепенно раскрывается учащимися. Например, в выражении 20+(34-8) знак "+" обозначает действие, которое надо выполнить над числом 20 и разностью чисел 34 и 8 (к 20 прибавить разность чисел 34 и 8). Кроме того, знак "плюс" служит для обозначения суммы - это выражение есть сумма, в которой первое слагаемое 20, а второе слагаемое выражено разностью чисел 34 и 8.

После того как дети ознакомятся во втором классе с порядком выполнения действий в сложных выражениях, приступают к формированию понятий суммы, разности, произведения, частного, в которых отдельные элементы заданы выражениями.

В дальнейшем, в процессе многократных упражнений в чтении, составлении и записи выражений, учащиеся постепенно овладевают умением устанавливать вид сложного выражения (в 2-3 действия).

Значительно облегчает детям работу схема, которая составляется коллективно и используется при чтении выражений:

установить, какое действие выполняется последним;

вспомнить, как называются числа при выполнении этого действия;

Упражнения в чтении и записи сложных действий, простейшими выражениями, помогают детям усвоить правила порядка действий.

1.2 Изучение правил порядка действий

Правила порядка выполнения действий в сложных выражениях изучаются во 2 классе, но практически некоторые из них дети используют еще в 1 классе.

Сначала рассматривается правило о порядке выполнения действий в выражениях без скобок, когда над числами производят либо только сложение и вычитание, либо только умножение и деление. Необходимость введения выражений, содержащих два и более арифметических действий одной ступени, возникает при знакомстве учеников с вычислительными приемами сложения и вычитания в пределах 10, а именно:

Аналогично: 6 - 1 - 1, 6 - 2 - 1, 6 - 2 - 2.

Так как для нахождения значений этих выражений школьники обращаются к предметным действиям, которые выполняются в определенном порядке, то они легко усваивают тот факт, что арифметические действия (сложение и вычитание), которые имеют место в выражениях, выполняются последовательно слева направо.

С числовыми выражениями, содержащими действия сложения и вычитания, а также скобки, учащиеся впервые встречаются в теме "Сложение и вычитание в пределах 10". Когда дети встречаются с такими выражениями в 1 классе, например: 7 - 2 + 4, 9 - 3 - 1 , 4 +3 - 2; во 2 классе, например: 70 - 36 +10, 80 - 10 - 15, 32+18 - 17; 4*10:5, 60:10*3, 36:9*3, учитель показывает, как читают и записывают такие выражения и как находят их значение (например, 4*10:5 читают: 4 умножить на 10 и полученный результат разделить на 5). К моменту изучения во 2 классе темы "Порядок действий" учащиеся умеют находить значения выражений этого вида. Цель работы на данном этапе - опираясь практические умения учащихся, обратить их внимание на порядок выполнения действий в таких выражениях и сформулировать соответствующее правило. Учащиеся самостоятельно решают подобранные учителем примеры и объясняют, в каком порядке выполняли; действия в каждом примере. Затем формулируют сами или читают по учебнику вывод: если в выражении без скобок указаны только действия сложения и вычитания (или только действия умножения и деления), то их выполняют в том порядке, в каком они записаны (т.е. слева направо).

Несмотря на то, что в выражениях вида а+в+с, а+(в+с) и (а+в)+с наличие скобок не влияет на порядок выполнения действий в силу сочетательного закона сложения, на этом этапе учащихся целесообразнее сориентировать на то, что сначала выполняется действие в скобках. Это связано с тем, что для выражений вида а - (в+с) и а - (в - с) такое обобщение неприемлемо и учащимся на начальном этапе довольно трудно будет сориентироваться в назначении скобок для различных числовых выражений. Использование скобок в числовых выражениях, содержащих действия сложения и вычитания, в дальнейшем получает свое развитие, которое связано с изучением таких правил, как прибавление суммы к числу, числа к сумме, вычитание суммы из числа и числа из суммы. Но при первом знакомстве со скобками важно нацелить учащихся на то, что сначала выполняется действие в скобках.

Учитель обращает внимание детей на то, как важно соблюдать это правило при вычислениях, иначе можно получить неверное равенство. Например, учащиеся объясняют, каким образом, получены значения выражений: 70 - 36 +10=24, 60:10 - 3 =2, почему они неверны, какие значения в действительности имеют эти выражения. Аналогично изучают порядок действий в выражениях со скобками вида: 65 - (26 - 14), 50:(30 - 20), 90:(2 * 5). С такими выражениями учащиеся также знакомы и умеют их читать, записывать и вычислять их значение. Объяснив порядок выполнения действий в нескольких таких выражениях, дети формулируют вывод: в выражениях со скобками первым выполняется действие над числами, записанными в скобках. Рассматривая эти выражения нетрудно показать, что действия в них выполняются не в том порядке, в каком записаны; чтобы показать другой порядок их выполнения, и использованы скобки.

Следующим вводится правило порядка выполнения действий в выражениях без скобок, когда в них содержатся действия первой и второй ступени. Поскольку правила порядка действий приняты по договоренности, учитель сообщает их детям или же учащиеся знакомятся с ними по учебнику. Чтобы учащиеся усвоили введенные правила, наряду с тренировочными упражнениями включают решение примеров с пояснением порядка выполнения их действий. Эффективны также упражнения в объяснении ошибок на порядок выполнения действий. Например, из заданных пар примеров предлагается выписать только те, где вычисления выполнены по правилам порядка действий:

После объяснения ошибок можно дать задание: используя скобки, изменить порядок действий так, чтобы выражение имело заданное значение. Например, чтобы первое из приведенных выражений имело значение, равное 10, надо записать его так: (20+30):5=10.

Особенно полезны упражнения на вычисление значения выражения, когда ученику приходится применять все изученные правила. Например, на доске или в тетрадях записывается выражение 36:6+3*2. Учащиеся вычисляют его значение. Затем по заданию учителя дети изменяют с помощью скобок порядок действий в выражении:

Интересным, но более трудным является обратное упражнение: расставить скобки так, чтобы выражение имело заданное значение:

Также интересными являются упражнения следующего вида:

1. Расставьте скобки так, чтобы равенства были верными:

25-17:4=2 3*6-4=6

2. Поставьте вместо звездочек знаки "+" или "-" так, чтобы получились верные равенства:

3. Поставьте вместо звездочек знаки арифметических действий так, чтобы равенства были верными:

Выполняя такие упражнения, учащиеся убеждаются в том, что значение выражения может измениться, если изменяется порядок действий.

Для усвоения правил порядка действий необходимо в 3 и 4 классах включать все более усложняющиеся выражения, при вычислении значений которых ученик применял бы каждый раз не одно, а два или три правила порядка выполнения действий, например:

90*8- (240+170)+190,

469148-148*9+(30 100 - 26909).

При этом числа следует подбирать так, чтобы они допускали выполнение действий в любом порядке, что создает условия для сознательного применения изученных правил.

1.3 Ознакомление с преобразованием выражений

Преобразование выражения - это замена данного выражения другим, значение которого равно значению данного выражения. Учащиеся выполняют такие образования выражений, опираясь на свойства арифметических действий и следствия, вытекающие из них.

При изучении каждого правила учащиеся убеждаются в том, что в выражениях определенного вида можно выполнять действия по-разному, но значение выражения при этом не изменяется. В дальнейшем знания свойств действий учащиеся применяют для преобразования заданных выражений в равные им выражения. Например, предлагаются задания вида: продолжить запись так, чтобы знак "=" сохранился:

56- (20+1)=56-20...

(10+5) * 4=10*4...

60:(2*10)=60:10...

Выполняя первое задание, учащиеся рассуждают так: слева из 56 вычитают сумму чисел 20 и 1, справа из 56 вычли 20; чтобы справа получилось столько же, сколько слева, надо справа еще вычесть 1. Аналогично преобразуются другие выражения, т.е., прочитав выражение, ученик вспоминает соответствующее правило и, выполняя действия по правилу, получает преобразованное выражение. Чтобы убедиться в правильности преобразования, дети вычисляют значения заданного и преобразованного выражений и сравнивают их. Применяя знания свойств действий для обоснования приемов вычислений, учащиеся 2-4 классов выполняют преобразования выражений вида:

54+30=(50+4)+20=(50+20)+4=70+4=74

72:3=(60+12):3=60:3+12:3=24

16 * 40=16 * (3 * 10)=(16 * 3) * 10=540

Здесь также необходимо, чтобы учащиеся не только поясняли, на основе чего получают каждое последующее выражение, но и понимали, что все эти выражения соединены знаком " = ", потому что имеют одинаковые значения. Для этого иногда следует предлагать детям вычислять значения выражений и сравнивать их. Это предупреждает ошибки вида:

75-30=70-30=40+5=45,

24*12=(10+2)=24*10 +24*2=288.

Учащиеся 2 - 3 классов выполняют преобразование выражений не только на основе свойств действии, но и на основе определений действий. Например, сумму одинаковых слагаемых заменяют произведением: 6+6+6=6 * 3, и наоборот: 9 * 4=9+9+9+9. Опираясь также на смысл действия умножения, преобразуют более сложные выражения: 8 * 4+8=8 * 5, 7 * 6 - 7 =7 * 5.

На основе вычислений и анализа специально подобранных выражений учащихся 3 класса подводят к выводу о том, что если в выражениях со скобками скобки не влияют на порядок действий, то их можно не ставить: (30+20)+10=30+20+10, (10-6):4=10-6:4 и т.д. В дальнейшем, используя изученные свойства действий и правила порядка действий, учащиеся упражняются в преобразовании выражений со скобками в тождественные им выражения без скобок. Например, предлагается записать данные выражения без скобок так, чтобы их значения не изменились: (65+30) - 20 (20+4) * 3

Объясняя решение первого из заданных выражений на основе правила вычитания числа из суммы, дети заменяют его выражениями: 65+30 - 20, 65 - 20+30, 30 - 20+65, поясняя порядок выполнения действий в них. Выполняя такие упражнения, учащиеся убеждаются, что значение выражения не меняется при изменении порядка действий только в том случае, если при этом применяются свойства действий.

Таким образом, знакомство школьников начальных классов с понятием выражение тесно связано с формированием вычислительных умений и навыков. В то же время введение понятия выражения позволяет организовать соответствующую работу по развитию математической речи учащихся.

Лекция 2. Буквенная символика, равенства, неравенства, уравнения

2.1 Методика ознакомления с буквенной символикой

В соответствии с программой по математике буквенная символика вводится в 3 классе.

Здесь учащиеся знакомятся с буквой а, как символом для обозначения неизвестного числа или одного из компонентов выражения при решении выражений вида: запиши вместо "окошечка" букву а. Найти значения суммы а+6, если а=8, а=7. Затем на последующих уроках знакомятся с некоторыми буквами латинского алфавита, обозначающими один из компонентов в выражении. С буквой х, как символом для обозначения неизвестного числа при решении уравнений вида: а+х=в, х - с =в - знакомятся в 4 четверти в 3 классе.

Введение буквы как символа для обозначения переменной позволяет уже в начальных классах начать работу над формированием понятия переменной, раньше приобщить детей к математическому языку символов.

Подготовительная работа к раскрытию смысла буквы как символа для обозначения переменной проводится в начале учебного года в 3 классе. На этом первом этапе дети знакомятся с некоторыми буквами латинского алфавита (а, в, с, d, k) для обозначения переменной, т.е. одного из компонентов в выражении.

При введении буквенной символики для обозначения числовой переменной важную роль в системе упражнений играет умелое комбинирование индуктивного и дедуктивного методов. В соответствии с этим упражнения предусматривают переходы от числовых выражений к буквенным и, обратно, от буквенных выражений к числовым. Например, на доску вывешивается плакат с тремя карманами, на которых написано: "1 слагаемое", "2 слагаемое", "сумма".

В процессе беседы с учениками учитель заполняет карманы плаката карточками с записанными на них числами и математическими выражениями:

Далее выясняется, можно ли еще составить выражения, сколько таких выражений можно составить. Дети составляют другие выражения и находят в них общее: одинаковое действие - сложение и различное - разные слагаемые. Учитель поясняет, что, вместо того, чтобы записывать разные числа, можно обозначить любое число, которое может быть слагаемым, какой-нибудь буквой, например а, любое число, которое может быть вторым слагаемым, например, в. Тогда сумму можно обозначить так: а+ в (соответствующие карточки выставляются в карманы плаката).

Учитель поясняет, что а+в также математическое выражение, только в нем слагаемые обозначены буквами каждая из букв обозначает любые числа. Эти числа называются значениями букв.

Аналогично вводится разность чисел как обобщенная запись числовых выражений. Чтобы учащиеся осознали, что буквы, входящие в выражение, например, в+с, могут принимать множество числовых значений, а само буквенное выражение является обобщенной записью числовых выражений, предусматриваются упражнения на переход от буквенных выражений к числовым.

Учащиеся убеждаются, что, придавая буквам личные числовые значения, можно получить много, сколько угодно числовых выражений. В таком же плане проводится работа по конкретизации буквенного выражения - разность чисел.

Далее в связи с работой над выражениями раскрывается понятие постоянной величины. С этой целью рассматриваются выражения, в которых постоянная величина фиксируется с помощью числа, например: а±12, 8±с. Здесь, как и на первом этапе, предусматриваются упражнения на переход от числовых выражений к выражениям, записанным с помощью букв и цифр, и обратно.

С этой целью на первых порах используются плакат с тремя карманами.

Заполняя карманы плаката карточками с записанными на них числами и математическими выражениями, учащиеся замечают, что значения первого слагаемого изменяются, а второго - не изменяются.

Учитель поясняет, что второе слагаемое можно записать с помощью чисел, тогда сумму чисел можно записать так: т + 8, и карточки вставляются в соответствующие карманы плаката.

Аналогичным образом можно получить математические выражения вида: 17±а, в ±30, а позднее - выражения вида: 7* в, с*4, а:8, 48:в.

В 4 классе проводятся упражнения вида: Найди значения выражения а:в, если

а=3 400 и в=2;

а=2 800 и в=7.

Когда учащиеся уясняют смысл буквенной символики, можно использовать буквы в качестве средства обобщения формируемых у них знаний.

Конкретной базой для использования буквенной символики как инструмента обобщения служат знания об арифметических действиях и те знания, которые формируются на их основе.

К ним относятся понятия об арифметических действиях, их свойствах, о связях между компонентами и результатами действий, об изменении результатов арифметических действий в зависимости от изменения одного из компонентов и т.п.

Таким образом, использование буквенной символики способствует повышению уровня обобщения знаний, приобретаемых учащимися начальных классов, и готовит их к изучению систематического курса алгебры в следующих классах.

2.2 Числовые равенства, неравенства

Понятие о равенствах, неравенствах и уравнениях раскрывается во взаимосвязи. Работа над ними ведется с 1 класса, органически сочетаясь с изучением арифметического материала.

По новой программе ставится задача научить детей выполнять сравнение чисел, а также сравнение выражений с целью установления отношений "больше", "меньше", "равно"; научить записывать результаты сравнения с помощью знаков ">", "<", "=" и читать полученные равенства и неравенства.

Числовые равенства и неравенства учащиеся получают на основе сравнения заданных чисел или арифметических выражений. Первоначально у младших Школьников формируются понятия только о верных Равенствах и неравенствах (5>4, 6<7, 8=8).

Впоследствии, когда учащиеся накопят опыт работы над выражениями и неравенствами с переменной, после рассмотрения понятий истинного и ложного (верного и неверного) высказывания переходят к такому определению понятий равенства и неравенства, по которым любые два числа, два выражения, соединенные одним из знаков "больше", "меньше" называется неравенством. При этом различают верные и неверные равенства и неравенства. В 3 классе предлагаются такие упражнения: проверь, верны ли данные равенства (4 четверть): 760 - 400=90*4; 630:7=640:8.

Но этих упражнений мало. В 4 классе предлагаются аналогичные упражнения и другие, вида: проверь, верны ли неравенства: 478*24<478* (3*9); 356*10*6>356*16.

Ознакомление с равенствами и неравенствами в начальных классах непосредственно связывается с изучением нумерации и арифметических действий. математический алгебра уравнение

Сравнение чисел осуществляется сначала на основе сравнения множеств, которое выполняется, как известно, с помощью установления взаимно-однозначного соответствия. Этому способу сравнения множеств учат детей в подготовительный период и в начале изучения нумерации чисел первого десятка. Попутно выполняется счет элементов множеств и сравнение полученных чисел. В дальнейшем при сравнении чисел учащиеся опираются на их место в натуральном ряду: 9<10, потому что при счете число 9 называют перед числом 10, и т.д.

Установленные отношения записываются с помощью знаков ">", "<", "=", учащиеся упражняются в чтении и записи равенств и неравенств. Впоследствии при изучении нумерации чисел в пределах 100, 1000, а также нумерации многозначны: чисел сравнение чисел осуществляется либо на основе сопоставления их по месту в натуральном ряду, либо на основе разложения чисел по десятичному составу сравнения соответствующих разрядных чисел, начиная с высшего разряда.

Сравнение именованных чисел сначала выполняется с опорой на сравнение самих значений величин, а потом осуществляется на основе сравнения отвлеченных чисел, для чего заданные именованные числа выражаются в одинаковых единицах измерения.

Сравнение именованных чисел вызывает большие трудности у учащихся, поэтому, чтобы научить этой операции, надо систематически во 2-4 классах предлагать разнообразные упражнения:

1 дм * 1 см, 2 дм * 2 см

Замените равным числом: 7 км 500 м = _____ м

3) Подберите числа таким образом, чтобы запись была верна: ____ ч < ____ мин, ___ см=__ дм и т.д.

4) Проверить верные или неверные равенства даны, исправьте знак, если равенства неверны:

4 т 8 ц=480 кг, 100 мин.=1 ч, 2 м 5 см=250 см.

Переход к сравнению выражений осуществляется постепенно. Сначала в процессе изучения сложения и. вычитания в пределах 10 дети длительное время упражняются в сравнении выражения и числа. Первые неравенства вида 3+1>3, 3 - 1<3 полезно получать из равенства (3=3), сопровождая преобразования соответствующими операциями над множествами. В дальнейшем выражение и число учащиеся сравнивают, не прибегая к операциям над множествами: находят значение выражения и сравнивают его с заданным числом, что отражается в записях:

После знакомства с названиями выражений учащиеся читают равенства и неравенства так: сумма чисел 5 и 3 больше, чем 5.

Опираясь на операции над множествами и сравнение множеств, учащиеся практически усваивают важные свойства равенств и неравенств (если а=в, то в=а). Сравнить два выражения - значит, сравнить их значения. Сравнение чисел и выражений впервые включается при изучении чисел в пределах 20, а затем при изучении действий во всех концентрах эти упражнения систематически предлагаются детям.

При изучении действий в других концентрах упражнения на сравнение выражений усложняются: более сложными становятся выражения, учащимся предлагаются задания вставить в одно из выражений подходящее число так, чтобы получить верные равенства ила неравенства, составить из данных выражений верные равенства или верные неравенства.

Таким образом, при изучении всех концентров упражнения на сравнение чисел и выражений, с одной стороны, способствуют формированию понятий о равенствах и неравенствах, а с другой стороны, усвоению знаний о нумерации и арифметических действиях, а также выработке вычислительных навыков.

2.3 Методика ознакомления с неравенствами с переменной

Неравенства с переменной вида: х+3 < 7, 10 - х >5 вводятся в 3 классе. Сначала переменная обозначается не буквой, а "окошечком", затем обозначается буквой.

Термины "решить неравенство", "решение неравенства" не вводятся в начальных классах, поскольку во многих случаях ограничиваются подбором только нескольких значений переменной, при котором получается верное неравенство. Упражнения выполняются под руководством учителя.

Упражнения с неравенствами закрепляют вычислительные навыки, а также помогают усвоению арифметических знаний. Подбирая значения буквы в неравенствах и равенствах вида: 5 + х = 5, 5 - х =5 10 * х=10, 10* х <10, учащиеся закрепляют знания особых случаев действий. Но самым важным является то, что работая с неравенствами, учащиеся закрепляют представление о переменной и подготавливаются к решению неравенств в 5 классе. В соответствии с программой в 1-4 классах рассматриваются упражнения первой степени с одним неизвестным вида: 7+х=10, х* (17 - 10)=70.

Упражнения в начальных классах рассматриваются как верные равенства, решение уравнения сводится к отыскиванию того значения буквы (неизвестного числа), при котором данное выражение имеет указанное значение. Нахождение неизвестного числа в таких равенствах выполняется на основе знания связи между результатом и компонентами арифметических действий. Эти требования программы определяют методику работы над уравнениями,

2.4 Методика изучения уравнений

На подготовительном этапе к введению первых уравнений при изучении сложения и вычитания в пределах 10 учащиеся усваивают связь между суммой и слагаемыми. Кроме того, к этому времени дети овладевают умением сравнивать выражение и число и получают первые представления о числовых равенствах вида: 8=5+3, 6+4=40. Большое значение в плане подготовки к введению уравнений имеют упражнения на подбор пропущенного числа в равенствах вида: 4+*=6, 5- *=2, В процессе выполнения таких упражнений дети привыкают к мысли, что неизвестным может быть не только сумма или разность, но и одно из слагаемых.

Понятие об уравнении вводится в 3 классе. Решаются уравнения устно, способом подбора, т.е. детям предлагают простые уравнения вида: х + 3=5. Для решения таких уравнений дети вспоминают состав чисел в пределах 10, в данном случае состав числа 5 (3 и 2), значит, х=2.

В 4 классе учитель показывает запись решения уравнения, опираясь на знания детей о связях между компонентами и результатом арифметических действий. Например, 6+х=15. Нам неизвестно второе слагаемое, Чтобы получить второе слагаемое надо из суммы вычесть первое слагаемое.

Запись решения:

Проверка:

Учащимся надо объяснить, что когда производим проверку, надо обязательно после подстановки вместо х полученного числа, найти значение полученного выражения.

Позже, на следующем этапе, уравнения решаются на основе знания правил нахождения неизвестного компонента.

На каждый случай отводится отдельный урок.

Размещено на Allbest.ru

...

Подобные документы

    Понятие неравенства, его сущность и особенности, классификация и разновидности. Основные свойства числовых неравенств. Методика графического решения неравенств второй степени. Системы неравенств с двумя переменными, с переменной под знаком модуля.

    реферат , добавлен 31.01.2009

    Тригонометрические уравнения и неравенства в школьном курсе математики. Анализ материала по тригонометрии в различных учебниках. Виды тригонометрических уравнений и методы их решения. Формирование навыков решения тригонометрических уравнений и неравенств.

    дипломная работа , добавлен 06.05.2010

    Теоретические сведения по теме "Признаки равенства треугольников". Методика изучения темы "Признаки равенства треугольников". Тема урока "Треугольник. Виды треугольников". "Свойства равнобедренного и равностороннего треугольников".

    курсовая работа , добавлен 11.01.2004

    Типы уравнений, допускающих понижение порядка. Линейное дифференциальное уравнение высшего порядка. Теоремы о свойствах частичных решений. Определитель Вронского и его применение. Использование формулы Эйлера. Нахождение корней алгебраического уравнения.

    презентация , добавлен 29.03.2016

    Понятие и математическое описание элементов дифференциального уравнения как уравнения, связывающего искомую функцию одной или нескольких переменных. Состав неполного и линейного дифференциального уравнения первого порядка, их применение в экономике.

    реферат , добавлен 06.08.2013

    Метод аналитического решения (в радикалах) алгебраического уравнения n-ой степени с возвратом к корням исходного уравнения. Собственные значения для нахождения функций от матриц. Устойчивость решений линейных дифференциальных и разностных уравнений.

    научная работа , добавлен 05.05.2010

    Вид уравнения Риккати при произвольном дробно-линейном преобразовании зависимой переменной. Свойства отражающей функции, ее построение для нелинейных дифференциальных уравнений первого порядка. Формулировка и доказательства леммы для ОФ уравнения Риккати.

    курсовая работа , добавлен 22.11.2014

    Основные направления развертывания линии уравнений и неравенств в школьном курсе математики, ее связь с числовой и функциональной системой. Особенности изучения, аналитический и графический методы решения уравнений и неравенств, содержащих параметры.

    курсовая работа , добавлен 01.02.2015

    Систематизация сведений о линейных и квадратичных зависимостях и связанных с ними уравнениях и неравенствах. Выделение полного квадрата, как метод решения некоторых нестандартных задач. Свойства функции |х|. Уравнения и неравенства, содержащие модули.

    дипломная работа , добавлен 25.06.2010

    Анализ особенностей разработки вычислительной программы. Общая характеристика метода простых итераций. Знакомство с основными способами решения нелинейного алгебраического уравнения. Рассмотрение этапов решения уравнения методом половинного деления.



КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «naruhog.ru» — Советы по чистоте. Стирка, глажка, уборка